
Natural Language Engineering 1 (1): 1–28. Printed in the United Kingdom

c© 2014 Cambridge University Press

1

Sarf: Fast and Application Customizable Arabic
Morphological Analyzer

Fadi A. Zaraket

Ameen Jaber

Jad Makhlouta
Electrical and Computer Engineering,

American university of Beirut

( Received 20 March 2014; revised 30 September 2014)

Abstract

The rich nature of Arabic morphology makes morphological analysis key for Arabic natural language
processing applications. Arabic morphological analyzers return several morphological solutions for
a given Arabic word. Each solution consists of several morphological features such as part of speech
and gloss description tags. Often times, applications need only few of those features. This paper
presents Sarf, an application customizable morphological analyzer for Arabic. Sarf provides an in-
terface that allows application developers to (1) control and prioritize the analysis, (2) refine solution
features, and (3) define categories and associate them with existing morphemes.

Sarf uses agglutinative and fusional morphemes for affix representation, and refines the morpheme
lexicons of SAMA and BAMA. This reduces redundant morphemes, and subsequently inconsistent
morpheme tags in the lexicons. It also solves the segmentation correspondence problem between an
input word and the several parts of the associated morphological solution. It uses diacritics to refine
solutions, and solves the ‘run-on words’ problem. The implementation of Sarf efficiently encodes
the morpheme lexicons. Sarf was used in several NLP applications for information extraction and
provided more accurate solutions than existing solvers with faster running time.

1 Introduction

Natural language processing (NLP) applications such as machine translation (MT) and
information extraction (IE) require morphological analysis to preprocess Arabic text due
to the rich morphological nature of the Arabic language (Benajiba, Rosso, & Benedı́ruiz,
2007; Habash & Sadat, 2006). Arabic morphological analyzers return the internal struc-
ture of a given Arabic word composed of several morphemes including affixes (prefixes
and suffixes), clitics (proclitics and enclitics), and stems (Al-Sughaiyer & Al-Kharashi,
2004). The morphological solution consists also of several morphological features (tags)
associated with the word and its constituent morphemes such as part of speech (POS),
transliteration, gloss, and vocalized morpheme form (VMF) tags (diacriticized form of the
morpheme). The prefix and suffix attach before and after the stem, respectively. Clitics are
special affixes that attach to the stem to form a word, and differ from regular affixes in that
they play a syntactic role of another word (often omitted) (Habash, 2010).

This work presents Sarf, an fast and application customizable morphological analyzer
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suffix Aî
	
Eð stem �J.ªË prefix �J
�ð

POS IVSUFF SUBJ:MP MOOD:I+IVSUFF DO:3FS VERB IMPERFECT CONJ+FUT+IV3MP

Transliteration uwnahA loEab wa+sa+ya

Gloss [MASC.PL.]+it/them/her. play and they will

Table 1. Example morphological solution for the word Aî
	
EñJ.ªÊJ
�ðwsyl↪bwnhā

for Arabic that was used in several applications for information extraction from Arabic
text (Jaber & Zaraket, 2013; Makhlouta, Zaraket, & Harkous, 2012; Zaraket & Makhlouta,
2012a, 2012c). Sarf provides NLP application developers with an application program-
ming interface (API) to control and refine morphological analysis on the fly. The developer
implements the interfaces in the application. Sarf calls the interfaces on control points such
as prefix, stem, suffix, and full solution matches. The Sarf API allows the application to (1)
control and prioritize the analysis, (2) refine the solution features, and (3) define developer
categories and associate them with existing morphemes.

Sarf is a significant extension of the work in (Zaraket & Makhlouta, 2012b). It rep-
resents Arabic affixes as agglutinative affix morphemes with fusional affix concatenation
rules. Simpler agglutinative affix morphemes can be concatenated to form a more complex
affix (Vajda, 2001). Fusional affix concatenation rules specify affix pairs and use regular
expressions in as substitution rules to compose the resulting orthographic and semantic
tags from the tags of the original morphemes (Spencer, 1991). The Sarf substitution rules
are in sync with rules and examples on morpheme concatenative properties from Arabic
morphology textbooks (AlRajehi, 2000a, 2000b). This representation resolves consistency,
maintenance, and segmentation issues of the current approaches in BAMA and SAMA.
Sarf also provides the option to use partial diacritics in disambiguating the morphological
solutions of a partially diacritized word.

Sarf makes the following additional contributions:

• Sarf provides an application customizable morphological analyzer where the devel-
oper can control and refine the analysis.

• Sarf is a novel Arabic morphological analyzer with agglutinative affixes and fusional
affix concatenation rules based on textbook Arabic morphological rules and on the
concatenation rules of existing analyzers.

• Sarf solves inconsistencies in existing affix lexicons of BAMA and SAMA.
• Sarf solves the correspondence between the morphological solution and the morpho-

logical segmentation of the original text problem.
• Sarf is fully implemented and available online as an open source tool.1

We evaluated Sarf for segmentation correspondence, lexicon size, lexcion cosistency,
accuracy, and runtime efficiency. Our results show that Sarf lexicons are smaller than lex-
icons of existing analyzers, and provide coverage for more morphological solutions. Sarf

1 http://research-fadi.aub.edu.lb/carla/doku.php?id=sarf

http://research-fadi.aub.edu.lb/carla/doku.php?id=sarf
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Prefix Vocalized Category Gloss POS data

	
¬f

�	
¬fa Pref-Wa and/so fa/CONJ+

ø



y �ø



ya IVPref-hw-ya he/it ya/IV3MS+

ú



	
¯fy �ú




�	
¯faya IVPref-hw-ya and/so + he/it fa/CONJ+ya/IV3MS+

ú


æ�sy �ú



æ
�
�saya IVPref-hw-ya will + he/it sa/FUT+ya/IV3MS+

ú


æ�

	
¯fsy �ú



æ
�
�
�	
¯fasaya IVPref-hw-ya and/so + will + he/it fa/CONJ+sa/FUT+ya/IV3MS+

ø



y �ø



ya IVPref-hmA-ya they (both) ya/IV3MD+

ú



	
¯fy �ú




�	
¯faya IVPref-hmA-ya and/so + they (both) fa/CONJ+ya/IV3MD+

ú


æ�sy �ú



æ
�
�saya IVPref-hmA-ya will + they (both) sa/FUT+ya/IV3MD+

ú


æ�

	
¯fsy �ú



æ
�
�
�	
¯fasaya IVPref-hmA-ya and/so + will + they (both) fa/CONJ+sa/FUT+ya/IV3MD+

ðw �
ðwa Pref-Wa and wa/CONJ+

ø



ðwy �ø



�
ðwaya IVPref-hw-ya and + he/it wa/CONJ+ya/IV3MS+

ú


æ�ðwsy �ú



æ
�
�

�
ðwasaya IVPref-hw-ya and + will + he/it wa/CONJ+sa/FUT+ya/IV3MS+

ø



ðwy �ø



�
ðwaya IVPref-hmA-ya and + they (both) wa/CONJ+ya/IV3MD+

ú


æ�ðwsy �ú



æ
�
�

�
ðwasaya IVPref-hmA-ya and + will + they (both) wa/CONJ+sa/FUT+ya/IV3MD+

Table 2. Partial BAMA v1.2 prefix lexicon

simplifies the lexicon maintenance task, provides better accuracy and improves run time
efficiency as compared to existing analyzers.

1.1 Background and motivation

Current morphological analyzers such as BAMA (Buckwalter, 2002), SAMA (Kulick,
Bies, & Maamouri, 2010a), Beesley (Beesley, 2001), MADAMIRA (Pasha et al., 2014),
and ElixirFM (Smrž, 2007) take as input white space delimited tokens, consider them as
words, and enumerate all possible morphological solutions for each word.

For example, given the word A î
	
Eñ J. ª Ê J
 �ðwsyl↪bwnhā (and they will play it), an

analyzer may return the solution presented in Table 1 with a prefix, a stem, a suffix, and

their corresponding POS, transliteration, and gloss tags. The prefix � J
�ð can be further

segmented into (1) the proclitic ð with POS tag CONJ and gloss tag and, (2) the proclitic

�� with POS tag FUT and gloss tag will, and (3) the prefix �J
� with POS tag IV3MP and gloss

tag they(people). Similarly, the suffix Aî
	
Eð can be segmented into (1) the suffix �

	
Kð, forming

a circumfix with �J
�, with POS tag IVSUFF SUBJ:MP MOOD:I and gloss tag [MASC.PL.], and (2)

the enclitic Aê� with POS tag IVSUFF DO:3FS and gloss tag it/them/her.

The exhaustive enumeration of all solutions may hurt performance and may not be nec-
essary or appropriate in some applications as noted in (Maamouri, Bies, Kulick, Zaghouani,
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et al., 2010). Thus the need of a customizable morphological analyzer that adapts to appli-
cation specific requirements.

The accuracy of morphological analysis suffers from inherent difficulties of the Arabic
language such as omitted diacritics and position dependent letter forms. Diacritics, i.e.

short vowels, such as fatha ( ��a ), damma ( ��u ), kasra ( ��i ), tanween (i.e. doubled diacritic

including ��an , ��un , �
�
in ), and sokun ( ��) are almost always omitted in written Arabic text

as they can be inferred by human readers. The mark shadda ( ��) denotes the repetition of
the marked character and is also often omitted. Partial diacritics can help disambiguate

solutions. Consider the unvocalized word É¿

@↩kl with nine morphological solutions. Its

partially vocalized version É¿�


@↩akil has only two solutions; VMF É¿�

�
@↩aakil with gloss

I+trust/put in charge, and VMF
�

É¿�

�
@↩aukil with gloss I+make tired/wear out.

Analyzers such as BAMA and SAMA ignore partial diacritics while other analyzers such
as (Attia & Elaraby Ahmed, 2000; Beesley, 2001; Chaâben Kammoun, Hadrich Belguith,
& Ben Hamadou, 2010) make use of the partial diacritics to reduce ambiguity. Sarf pro-
vides an option that enables the use of existing diacritics for disambiguation, and considers
the diacritics at morpheme boundaries, to generate only the diacritic matching solutions,
rather than generating all morphological solutions then filtering them.

Arabic letters have up to four different forms corresponding to their position in a word,

i.e, beginning, middle, end, and separate word forms. This allows the phrase �
é�PYÖÏ @úÍ@ to

be visually recognizable as two separate words úÍ@ilā (to) and �
é�PYÖÏ @almdrsh (the school)

without the need of a delimiter space in between. The reason is the first word úÍ@ilā ends

with øā a non-connecting letter. These words, referred to as ‘run-on’ words (Buckwalter,
2004), occur regularly, and greatly increase the difficulty of tokenization.

Concatenative morphological analyzers (Buckwalter, 2002; Kulick et al., 2010a) are
based on lexicons of prefixes Lp, stems Ls, and suffixes Lx. As shown in Table 2, each en-
try in a lexicon includes the morpheme, its vocalized form with diacritics, a concatenation
compatibility category (CCC) rule, a POS tag, and a gloss tag. Separate CCC rules specify
the compatibility of prefix-stem Rps, stem-suffix Rsx, and prefix-suffix (circumfix) Rpx

concatenations. The affixes ð, and �K
 in the before mentioned example are valid standalone

prefixes, and can be concatenated to the stem I. ªË to form I. ªËð and I. ªÊK
, respectively.
The Lp and Lx lexicons contain also all final forms of concatenated affixes as shown in
Table 2 for sample morphemes.

This is the source of several problems:

• Lp and Lx contain redundant entries which results in maintenance and consistency
issues (Kulick, Bies, & Maamouri, 2010b; Maamouri, Kulick, & Bies, 2008).

• Augmenting Lp and Lx with additional morphemes, such as
�
@↩aa (the question

glottal hamza), may result in a quadratic increase in the size of the lexicons (Hun-
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spell Manual Page., 2012). The additional morpheme may attach to exiting mor-
phemes. Currently, this results in adding all the resulting morphemes to the BAMA
and SAMA lexicons.

• The Lp and Lx lexicons are larger than needed especially that they have to account
for several forms of a morpheme with varying diacritics.

• The concatenated forms in Lp and Lx contain concatenated POS and other tags. The
alignment and correspondence between the original word and its morphemes with
the tags of its morphological solution are essential to the success of NLP tasks such
as MT and IE (Lee, Haghighi, & Barzila, 2011; Nasredine, Laib, & Fluhr, 2008).

The analysis of the example ZA
	

�
�
®ÊËllqd. ā↩ , li/PREP + Al/DET + qaDA’/NOUN, is seg-

mented into two tokens: li/PREP and Al/DET + qaDA’/NOUN (Maamouri et al., 2008).
The best approximation of the unvocalized entry of each token is È and ZA

	
�

�
® Ë@ ,

respectively, with an extra letter @ā . This is not a faithful representation of the origi-
nal text data and the segmentation does not correspond with that of the input text.

Alternatively, Sarf represents only atomic affix morphemes in the lexicons and gener-
ates compound affixes from the atomic ones using agglutinative and fusional rules. In this
case, Sarf requires only five atomic affix morphemes and five prefix-prefix rules that form
compound affixes from atomic ones to represent the entries of Table 2. Finally, we evalu-
ated Sarf with several case studies from the applications that used it with its API (Jaber &
Zaraket, 2013; Makhlouta et al., 2012; Zaraket & Makhlouta, 2012a, 2012c). Our results
show that Sarf performs better than existing Arabic morphological analyzers in terms of
running time, and the application case studies show the efficiency and the utility of the Sarf
application customizable API.

The rest of this paper is structured as follows. In Section 2, we present an overview of
Sarf. In Section 3, we present the interface provided by Sarf for the application developer
to control and refine the morphological analysis. In Section 4, we present our method to
build agglutinative affix morphemes with fusional affix concatenation rules. In Section 5,
we present our method of using partial diacritics to reduce the morphological ambiguity. In
Section 6, we compare Sarf to related work. Finally, we discuss the use of Sarf in multiple
NLP tasks and present the results of comparing Sarf to other systems in terms of speed,
accuracy, and consistency in Section 8.

2 Overview

The flow diagram in Figure 1 illustrates the components of Sarf. The stem lexicon of Sarf
Ls extends the lexicon of Buckwalter (Buckwalter, 2002) with proper and location names
extracted from different online sources as well as biblical sources. 2 The fusional and
agglutinative affix rules encode the morpheme concatenation and affix/stem compatibil-
ity rules. The use of diacritics to disambiguate morphological solutions is optional. The
construct Sarf structures process takes as input the lexicon, the fusional and agglutinative

2 http://alasmaa.net/ , http://ar.wikipedia.org/, Genesis 4:17-23; 5:1-32; 9:28-10:32; 11:10-32; 25:1-
4, 12-18; 36:1-37:2; Exodus 6:14-25; Ruth 4:18-22; 1 Samuel 14:49-51; 1 Chronicles 1:1-9:44;
14:3-7; 24:1; 25:1-27:22; Nehemiah 12:8-26; Matthew 1:1-16; Luke 3:23-38

http://alasmaa.net/
http://ar.wikipedia.org/
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Construct Sarf structures

OnMatch API

Feature priority

rules

Feature selection

rules

Accept/reject

solution filter

DAG

Fusional/
agglutinative

rules
Arabic text

Prefix

DAG trie

Stem Suffix

DAG
Lexicons

Prefix

Solutions

Traverse structures

Use

diacritics

Stem

trie

Suffix

DAG

Apply

rules

Construct

trees
solution feature

Fig. 1. Sarf flow diagrams: construction and traversal of morpheme structures, and
generation of solutions.

rules, and the use diacritic option and constructs directed acyclic graph (DAG) structures
that encode the affixes, and a root index trie structure that encodes the stems (Aoe, 1989).

The traverse structures process reads the user-provided Arabic text in question one char-
acter at a time and traverses the Sarf structures accordingly. The traversal produces a se-
quence of morphemes each with its morpheme features, applies the fusional and agglu-
tinative rules on each morpheme, checks for concatenation compatibility, and constructs
morphological solution feature trees. The construction of the solution trees calls the On-
Match API at every morpheme match (control point) and takes into account the feature
priority and selection rules defined by the NLP application developer. A feature priority
rule is an order on features that is followed when constructing the morphological solution
tree. Features with higher priority appear at higher levels in the solution tree. A feature se-
lection rule defines the morphological features to be included in the morphological solution
tree; other features are ignored in the construction of the solution. The traversal reports the
constructed solution trees to a filter specified by the developer that either accepts or rejects
the reported solutions.

2.1 Sarf structures

Sarf represents affix lexicons and rules using directed acyclic graphs as shown in Figure 2.
This provides compactness as well as linear time traversal with respect to the input text.
Sarf represents stems in an efficient double array trie structure (Aoe, 1989) to benefit from
the common sub-strings. In contrast, the Buckwalter analyzer considers all possible sub-
strings and looks them up in affix hash tables, and performs several hash lookups in the
stem hash tables in the order of all possible partitions of the input string. Sarf saves a
binary version of the affix and stem structures which allows a fast loading time and only
regenerates them if one of the lexicons, and agglutinative and fusional rules are modified.

The diagram in Figure 2 illustrates the Sarf data structures. Subfigures (a), (b), and (c) in
Figure 2 represent P the prefix DAG, S the stem trie, and X the suffix DAG, respectively.
Boxes and circles denote morpheme versus non-morpheme nodes, respectively. The edges
between nodes are labeled with input letters. Morpheme nodes contain the morphological
features of the matching morpheme. These features include the VMF, gloss, POS, and
compatibility information for morpheme concatenation.
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ø



È

...

...

@
�

@

ε

(b) (c)

S XP

H.

H.

�

...

...
...

È

@

¨

... ...

ε

è

Ð

@

ð

	
à

...

...

...

...
@...

ð

�

ε

ε

(a)

Fig. 2. Example affix DAGs and stem trie.

When we reach a morpheme node in P , S, or X , we proceed with the traversal in the
next data structure. We use the symbol ε to refer to this transition. Invalid moves from
a current node given an input letter denote the absence of a valid solution through this
traversal path.

2.2 Solution construction

Figure 3 illustrates the analysis of the input é Ê¿

@ðw-↩klh . The traversal results in two

sequences of morpheme nodes where each sequence refers to a valid segmentation. The

first sequence is 〈ðw ,

@↩ ,É¿kl , èh 〉 and the second sequence is 〈ðw ,É¿


@↩kl , èh 〉.

Sarf calls the developer-defined API at each morpheme node and uses the feature se-
lection and priority rules to construct the solution tree of each morpheme. Each path from
the root of a morpheme solution tree to one of its leaves is a morpheme solution path.

Figures 3(a) to (e) show the constructed solution feature trees of the morphemes ðw ,

@↩ ,

É¿kl , èh , and É¿

@↩kl , respectively. For this example, the API selects the gloss, POS, and

VMF features with decreasing priority. Figure 3(f) illustrates an alternative solution feature

tree of the morpheme É¿

@↩kl with POS at highest priority followed VMF and gloss. The

comparison between the solution trees (e) and (f) shows how the priority rules can lead to
the construction of smaller trees depending on the application at hand. For example, the
solution feature tree (f) is more efficient if the developer is interested in the POS first.

The set of valid morphological solutions is composed of the solution paths that match the
prefix-prefix, prefix-stem, stem-suffix, suffix-suffix, and prefix-suffix compatibility rules.
For example, the first paths (paths to the leftmost leaves) of each of the solution trees in
Figure 3(a), (b), (c), and (d) are compatible. The resulting morphological solution has the

prefix ðw with POS tag CONJ+, gloss tag and, and VMF tag ðwa , the prefix

@↩ with POS tag

IVIS+, gloss tag I, and VMF tag

@↩a , the stem É¿ with POS tag VERB IMPERFECT, gloss tag

trust/put in charge, and VMF tag É¿kil , and the suffix è with POS tag PVSUFF:DO:3MS,

gloss tag him/it, and VMF èho .
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trust/put
in charge

PVSUFF:

DO:3MS

IVSUFF_

DO:3MS

POSS_PRON

_3MSIMPERFECT

VERB_

IMPERFECT

VERB_

make tired
/wear out

(a) (b) (c) (d)

fruit
/wear out
make tired

VERB_

PERFECT

eat/
consume

VERB_

PERFECT

feed

VERB_

PERFECT

food/ meal

/wear out
make tired eat/

consume
feed

VERB_

PERFECT

(e) (f)

fruit
eat/
consumefood/ meal

and I him/it his/its him/it

É¿
�

É¿ è è èð

@


@

ð

@ É¿ è

É¿

@

Noun

�
É¿


@

Noun

É¿

@ É¿


@ É

�
¿


@ É¿


@

Noun

É¿

@

�
É¿


@ É¿


@ É

�
¿


@

É¿

@

Noun

É¿

@ É¿


@

CONJ+ IVIS+

Fig. 3. Sample solution feature trees.

2.3 Running example

The diagram in Figure 2 illustrates a running example of Sarf and how it implements ag-
glutinative and fusional affixes, and handles ‘run-on’ words. The traversal Φ corresponding

to parsing the string 	
àñ J. «C

�
Ë@ A îD

.
ª Ê J
 �ðwsyl↪b-h-ā ’l-lā↪bwn 3 starts at the root square

node in P which is a morpheme node. The ε-edge connects P to S and proceeds from any
morpheme node in P to the root node in S. The ε-edge that connects S to X follows the
same behavior.

When there are two valid moves such as ðw and ε in the start case, Φ spawns an exact

copy of itself Ψ. Φ proceeds with ðw in P , and Ψ moves to S through ε. Each of Φ and
Ψ represent a valid analysis path so far. A traversal path (Φ or Ψ) dies when it reaches an

invalid move. In our example, if there were no stems that start with the letter ðw , Ψ will

die. In reality, Ψ will die when the input is at ©ÊJ
�ðwsyl↪ . The affix DAGs allow agglutina-

tive and fusional affixes. So for example, Φ will reach a morpheme node through ðw and

could proceed to S. But when �s follows, we move to another node in P corresponding

to the prefix �ðws . In fact, a valid traversal in P will process the sub-string ú


æ�ðwsy as a

prefix before moving to S. The same traversal behavior applies to X .

Consider Φ after it consumed ú


æ�ðwsy and transitioned into the root node of S. Now Φ

will traverse with I. ªËl↪b to reach a morpheme node. Before moving with the letter H. b

to the morpheme node, Φ needs to make sure that the stem I. ªËl↪b is compatible with the

prefix ú


æ�ðwsy . Sarf keeps compatibility category values as part of the accept nodes. Thus

3 	
àð H. ¨ @ È È @ @ è H. ¨ È ø



� ð in separate form to ease following the example
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each morpheme node in Figure 2 represents more than one concrete node. If the category

of I. ªËl↪b is compatible with the category of ú


æ�ðwsy then Φ moves to a morpheme node.

Otherwise, it moves to a regular node or dies.

Since Φ is now in a morpheme node in S, it continues to traverse S and spawns Ξ which

moves to the root of X . After Φ consumes �ëh , it dies since there is no �ë-edge from the

current node in S. Ξ consumes �ëh and reaches a valid analysis morpheme node.

A Sarf traversal considers a full word at any morpheme node in X and continues the
traversal using an ε transition to the root node ofP . This solves the ‘run-on’ words problem.

Consider the was no space between words 	
àñ J. «C

�
Ë@ and A îD

.
ª Ê J
 �ð . The traversal will

transition to the root of P when the word AîD
.
ªÊJ
�ð is fully consumed, and then the traversal

of 	
àñJ. «C

�
Ë@ will resume. As for the other transitions from X morpheme nodes to the root

of P before the completion of A îD
.
ªÊ J
�ð, they will result in dead traversals and they will

not be reported. Sarf reports a valid traversal, including the morphological solutions of the
‘run-on’ words, when it reaches text delimiters, such as white space and punctuation, with
valid segmentation of the input string.

3 Application specific api

Sarf provides the developer with an application programming interface (API) that allows
to (1) define developer categories and associate them with specific morphemes. (2) pro-
vide rules that prioritize and filter the solution features, and (3) control and refine the
morphological analysis on the fly at solution control points. The control points are (1) ag-
glutinative prefix matches, (2) stem matches, (3) agglutinative suffix matches, and (4) full
solution matches. The developer implements interfaces that Sarf calls at the control points.
The developer processes the solution features provided at the control point and returns a
value that instructs Sarf to (1) proceed with the analysis ignoring the current solution, (2)
accept the solution and continue considering other solutions, and (3) accept the solution
and stop the analysis. The developer can inspect at each control point the agglutinative
morphemes and their compatibility category tags, the VMF, gloss, POS, lemma, and the
developer-defined category tags.

Consider the task that aims to detect words with possible VERB POS tags. The API can
be implemented to reject the analysis at the stem control point if the POS tag is not a VERB.
This prevents the analyzer from computing insignificant full morphological solutions at
early stages of the analysis. The developer can also use the feature selection filter API to
disregard features such as VMF, gloss, and categories. This reduces the size of the solution

trees and their corresponding traversal time. For example, given the word É¿

@↩kl , with

gloss tags such as ‘he/it eat’ and ‘fruit’, Sarf typically returns nine possible morphological
solutions with different VMF, POS tags, and gloss tags. With the feature selection filter
API, Sarf considers only two solutions with two solutions with the VERB PERFECT and
NOUN POS tags.

Sarf also provides the developer with the ability to alter the structure of the morpholog-
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Category 1 Category 2 Resulting Category Substitution rules

NPref-Bi NPref-Al NPref-BiAl

NPref-Li NPref-Al NPref-LiAl
r//È@ ||È\\

Pref-Wa none of { Pref-0, NPref-La, PVPref-La} $2

IVPref-li- IVPref-*-y* IVPref-(@1)-liy(@2) d//he/||him/\\,
d//they||them\\ . . .
d//(+2)|| to\\

Table 3. Example rules from Rpp

ical solutions so that the traversal of the solutions is application specific. The developer
can provide a factorization order of the solution features using the API priority rules. Sarf
uses the priority rules to build the structures. This allows the developer to dismiss analysis
earlier at the control points. Consider the task with an aim is to detect adjectives with pos-
itive sentiment. Since the POS feature is more limited than the gloss feature, it might give
priority to the POS over the gloss. Hence, it can filter invalid solutions early in the analysis.

Moreover, Sarf enables the application developer to define categories and associate them
with existing morphemes. Consider the task of detecting words that indicate family rela-

tions such as 	áK. @ibn (son), H.


@↩b (father), and Ð


@↩m (mother). The developer can define a

category called ‘family connections’ and associate it with the stems 	áK. @ibn , H.


@↩b , Ð


@↩m

or with their relevant glosses. The user defined categories are attached to the tags in the
morpheme nodes as auxiliary tags that can be looked up in constant time.

4 Agglutinative and fusional morphemes

Sarf considers three types of affixes:

• Atomic affix morphemes such as � K
 can be affixes on their own and can directly
connect to stems using the Rps and Rsx rules.

• Partial affix morphemes such as � � can not be affixes on their own and need to
connect to other affixes before they connect to a stem.

• Compound affixes are concatenations of atomic and partial affix morphemes as well
as other smaller compound affixes. They can connect to stems according to the Rps

and Rsx rules.

Sarf forms compound affixes from atomic and partial affix morphemes using newly in-
troduced prefix-prefix Rpp and suffix-suffix Rxx concatenation rules.

Sarf considers Lp and Lx to be lexicons of atomic and partial affix morphemes asso-
ciated with their tags. Sarf forms agglutinative affixes using prefix-prefix Rpp and suffix-
suffix Rxx concatenation or agglutination rules. A rule r ∈ Rpp ∪ Rxx takes the compat-
ibility category tags of affixes a1 and a2 and checks whether they can be concatenated. If
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so, the rule takes a1 and a2 and their tags and generates the affix a = r(a1, a2) with its
associated tags according to substitution rules based on regular expressions. The rules are
fusional in the sense that they modify the orthography and the semantics of the resulting
affixes by more than simple concatenation.

We illustrate this with the example rules in Table 3. Row 1 presents a simple rule that

allows the concatenation of prefixes with category NPref-Bi such as K.bi- and »ka- to

prefixes with category NPref-Al such as È@, the result is the compound prefix with category
NPref-BiAl. Since no substitution rule is specified, the tags of the resulting prefix are simple
concatenations.

Row 2 presents a rule that takes prefixes with category NPref-Li such as Ëli- and prefixes

with category NPref-Al such as È@. The substitution rule replaces the Ë @ with Ë resulting in ÊË.
The syntax of the substitution rule for the affix form is r//(substring)||(replacement)\\.

The rule in the Row 3 states that prefixes of category Pref-Wa can be concatenated with
prefixes with categories that are neither of Pref-0, NPref-La, and PVPref-La categories. The
resulting category is denoted with $2 which means the category of the second prefix.

Row 4 illustrates the use of the wild character ‘*’ to capture sub-strings of length zero or
more in the second category, and refers to the captured sub-strings in the resulting category
using the ‘@’ operator. The ‘@’ operator is always followed by a number that denotes the
captured ‘*’ expression. Row 4 has also an example of substitution rules for the gloss
(description) tag that start with the letter d. The +2 pattern in the last substitution rule
means that the to partial gloss description should be appended after the gloss of the second
affix. Substitution rules for POS tags start with the letter p.

4.1 Building Rpp and Rxx

Our method is in line with native Arabic textbooks on morphology and syntax (AlRa-
jehi, 2000a, 2000b; Mosaad, 2009) where only atomic and partial affixes are introduced.
The textbooks also list rules to concatenate the affixes and discuss the syntax, semantic,
and phonological forms of the resulting affixes. For example, the fourth rule in Table 3 is
derived from a textbook rule that states IVPref-li- prefixes connect to all imperfect verb
prefixes and transform the subject pronoun in the gloss to an object pronoun.

The method built the rules in four steps:

1. In the first step, we encoded textbook morphological rules into patterns.

2. In the second step, we inspected the BAMA and SAMA affix lexicons and extracted
the atomic and partial affixes from them.

3. Then, we grouped the rest of the BAMA and SAMA affixes into the rules we col-
lected from the textbooks.

4. We refined the rules wherever necessary, and we grouped rules that shared the same
patterns.
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Affix Vocalized Inconsistent tag

a) missing plus in
gloss tag of prefix

É
	
¯fl É

	
¯fali and/so + for/to + the

ÈAK. ðwbāl ÈAK. ðwabiāl and + with/by + the

b) missing alternative
gloss in prefix

	
¬f

	
¬fa and/so

I.
	
¯fb I.

	
¯fabi and /so + with/by

½
	
¯fk ½

	
¯faka and /so + like/such as

c) gender/number
qualifier omitted in
gloss of subject suffix

	
àn 	

àn they [fem.pl.] <verb>

Ñî
	
Enhm Ñî

	
Enahom they [fem.pl.] <verb> them

�
H@āt �

H@āt [fem.pl.]

½
�
K@ātk ½

�
K@ātka [fem.pl.] your

d) also in gloss of
object suffix

AÒî
	
E @ānhmā AÒî

	
E @ānihimā them (both)

Õº
�
Ktkm Õ

�
º

��
J��atkum it/they/she <verb> you (pl.)

e) different ways to
express them (both) in
gloss of suffix

AÒî
�
Ethmā AÒ

�
î

��
D��athumā it/they/she <verb> them (both)

AÒë@āhmā AÒ
�
ëA��āhumā we <verb> (both of) them (both)

AÒëA
	
Knāhmā AÒ

�
ëA

	
Knāhumā we <verb> (both of) them (both)

f) ‘.’ omitted after pl
in gloss

Ðm Ñ
���um you [masc.pl.] <verb>

A
	
Kðwnā A

	
Kñ��uwnā you [masc.pl . ] <verb> us

g) POS tag is not
same as vocalized

é
�
Kth é�

�
Kthi +ti/PVSUFF SUBJ:2FS

+ hu/ hi/ PVSUFF DO:3MS

Table 4. Sample BAMA inconsistencies

We validated our work by generating all possible affixes and compared them against the
BAMA and SAMA affix lexicons. The comparison resulted in discovering the BAMA and
SAMA inconsistencies listed in Tables tables 4 and 5.

4.2 Redundancy

Consider the partial lexicon of prefixes in Table 2. The first five rows can be replaced with
three atomic affix morphemes and one partial affix morpheme in Lp and three rules to

generate compound morphemes in Rpp. Representing prefix ø



ya (them/both) required

four entries, three of them only differ in their dependency on the added ø



ya . Representing

prefix ðw required the addition of five entries. With Sarf, the equivalent addition of ø



ya

(them/both) requires only two rules in Rpp and the addition of ðw requires only one
additional entry in Lp. The difference is much larger when we consider the full lexicon as
will be shown in Section 7.

4.3 Inconsistencies

The entries in Tables tables 4 and 5 list examples of the 197 and 208 inconsistencies de-
tected in the affix lexicons of BAMA version 1.2 and SAMA version 3.1, respectively. We
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Affix Vocalized Inconsistent tag

a) missing standalone
alef with no hamza
prefix forms

@ā
�
@↩̄a I

A�sā
�
A

�
�sa↩au I

b) additional by in
gloss

ðw ðwa with

Ë @ðwā- Ë @ðwaā- with /by + the

c) additional space in
vocalized form

	
¯f- 	

¯fa-

d) wrong prefix 	
¯ðwf- 	

¯ðwafa- and + so/and

e) missing definite
indicator in suffix
gloss

�
H

�
@↩̄at �

H
�

�
@↩̄ati [fem.pl.] + [def.acc.]

½
�
K@ātk ½�

�
K� @ātiki [fem.pl.] + [def.acc.] + your [fem.sg.]

½
�
K
�
@↩̄atk ½�

�
K�

�
@↩̄atiki [fem.pl.] + [ def. acc.] + your [fem.sg.]

f) omitted
gender/num qualifier
in gloss

¼@āk ¼� A��āki we [verb] + you [fem.sg.]

Ñî
	
Enhm Ñ

�
î

�	
D��nahum they [fem.pl.] [verb] + them

g) different ways to
express them (both) in
gloss of suffix

AÒî
�
Ethmā AÒ

�
î

��
D��athumā it/they/she [verb] them (both)

AÒë@āhmā AÒ
�
ëA�� āhumā we [verb] (both of) them (both)

AÒëA
	
Knāhmā AÒëA

	
Knāhomā we [verb] (both of) them (both)

h) leftover BAMA
style tags in gloss

Õ»km Õ
�
»kum he/it [verb] + you [masc.pl.]

Õº
�
Ktkm Õ

�
º

��
Ktukum I [verb] + you (pl.) [masc.pl.]

	á»kn
��	á

�
º

���ukuna I [verb] + you (women) [fem.pl.]

i) indicative gloss
with jussive POS

A
	
Knā A

	
Knā IVSUFF MOOD:J, [ind.] [jus.] + us

ú



	
Gny ú




	
G
�
niy IVSUFF MOOD:J, [ind.] [jus.] + me

j) omitted ‘.’ in gloss
��u [def.nom.]

èh �
é��uhu [def.nom . ]

	áº
�
Ktkn

��	á
�
º

��
J��atukuna [fem.sg.] + [def.nom . ] + your [fem.pl . ]

k) shadda inconsistent
in POS

ø



y �ø



ya ya/POSS PRON 1S

ø



y �ù


��iyya . . . + ∼a/ ya/ POSS PRON 1S

Table 5. Sample SAMA inconsistencies

found a small number of these inconsistencies manually and we computed the full list via
comparing Lp and Lx with their counterparts computed using our agglutinative affixes.
Most of the inconsistencies are direct results of partially redundant entries with erroneous
tags. We note that SAMA corrected several BAMA inconsistencies, but also introduced
several new ones when modifying existing entries to meet new standards and when intro-
ducing new entries.

The following describes the BAMA inconsistencies illustrated in Table 4:

(a) Lp omits a plus (+) symbol that indicates boundaries in compound prefixes.

(b) Lp omits the (so) alternative gloss that corresponds to 	
¯f- in several compound prefixes.

(c) Lx omits gender and number qualifiers that appear within within square brackets from
several glosses of subject suffixes.
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(d) Lx omits gender and number qualifiers from several glosses of subject suffixes that
appear within parenthesis.

(e) Lx expresses the dual quantifier as ‘them (both)’ in the majority of the entries, and as
‘(both of) them’ in several entries.

(f) Lx omits the dot (‘.’) symbol from the gloss abbreviation of plural.

(g) Lx contains POS tags that are not consistent with the semantics of the vocalized tags
for compound affixes.

The following describes the SAMA inconsistencies illustrated in Table 5:

(a) Lp misses entries for Alef prefixes with omitted hamza or madda due to relaxed writ-
ing standards which are common in many documents. This is resolved in SAMA for
standalone Alef prefixes via preprocessing tokens and flipping all forms of Alef into
one form. We report it here since compound prefix entries with Alef are all listed, and
the standalone prefixes are available but commented out.

(b) Lp contains an additional erroneous alternative gloss forwa- in only one compound

prefixwa- ; while correctly not included elsewhere.

(c) Lp contains stray spaces in the vocalized tags of one of the 	
¯fa- alternatives.

(d) Lp contains an entry that supports the concatenation ofwa- and 	
¯fa- conjunctions.

This entry is erroneous and is illegal in Standard Arabic.

(e) Lx omits the definite indicator in the gloss of several suffixes.

(f) Lx omits gender and number qualifiers that appear within square brackets from the
gloss tags of several suffixes.

(g) Lx expresses the dual quantifier as ‘them (both)’ in the majority of the entries, and as
‘(both of) them’ in several other entries.

(h) Lx contains number indicators in the gloss tags still expressed in BAMA style.

(i) Lx contains entries with an indicative gloss mood and a jussive POS mood.

(j) Lx omits dot (‘.’) for the abbreviation of plural in several gloss tags.

(k) Lx represents a repeated consonant by a shadda in the POS tag where it should not.
SAMA POS tags should spell out the repeated consonants if each belongs to an one In
SAMA, the repeated consonant (of the shadda) is spelled out whenever the consonants
has its separated partial POS tag.

In addition, 53 BAMA and 27 SAMA minor differences exist between Lp and Lx of
BAMA and SAMA and their counterparts computed using our agglutinative affixes. For
example, the BAMA gloss tags for prefixes that contain ‘bi/PREP’ report ‘with/by’ in
some entries and its reverse ‘by/with’ in others. In addition, we detected several entries in
Lp of SAMA with no category compatibility rules in Rps, Rsx, and Rpx.
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5 Diacritics

Diacritics are short vowels that are often omitted in Arabic text and inferred by readers
from context. Their omission adds to the ambiguity problem of Arabic morphological anal-

ysis. The diacritics ��a (fatha), ��u (damma), and ��represent and appears above the letter.

‘a’ vowel, ‘o’ vowel, and consonant, respectively, and appear above the letter. The diacritic

��i represents a ‘y’ vowel and appears below the letter. The diacritics ��an , ��un , and �
�
in

represent the ‘a’, ‘o’, and ‘y’ vowels followed by a phonetically stressed
�	
àn consonant.

The shadda ��� mark is not a diacritic but is treated typographically as one, and is also
often omitted in Arabic text. It denotes a repeated letter, first as consonant, and second as
vocalized. Arabic forbids two consonant diacriticized letters to follow each other.

Analyzers such as BAMA and SAMA ignore input partial diacritics because they con-
sider them to be (1) rare in common corpora, and (2) unreliable because of dialect diversity
and human errors (Attia, 2006; Elkateb et al., 2006). However, the work in (Attia & Elaraby
Ahmed, 2000; Beesley, 2001; Chaâben Kammoun et al., 2010) considers partial diacritics
to decrease morphological ambiguity. We inspected the ATB v3.2 corpus (Maamouri &
Bies, 2004) for diacritics and we found that 1.364 percent of the words were partially di-
acriticized and those diacritics eventually reduced morphological ambiguity. Hence, we
decided to provide an option with Sarf that enables the use of existing partial diacritics in
text to eliminate morphological solutions that are not in agreement with the partial diacriti-
zation.

Key to partial diacritic analysis is a diacritic-aware consistency check that replaces stan-
dard string matching checks. The Diacritic-aware consistency check algo-
rithm takes as input two words w1 and w2. It checks that the sequence of non-diacritic
letters, ignoring the diacritics between them, are equal. It also checks that all sequences of
diacritics occurring between non-diacritic letters are consistent. Two sequences of diacrit-
ics are consistent iff:

1. Both are equal, or

2. One of the sequences is empty, or

3. If one has a shadda, then the other has no sukoun, or

4. If one has a shadda and the other has no shadda, then then the rest of the diacritics
are compared recursively.

Table 6 illustrates the diacritic-aware consistency check as compared to
the standard string comparison with an example. Part (a) shows two diacritic-consistent

words É
�
¿

�
@↩aakl and É

�
¿


@↩kal as a fatha ��a is compatible with an empty diacritic and a

shadda �� is compatible with a fatha ��a . Part (b) illustrates two inconsistent diacritizations

since ��i is incompatible with ��a next to the letter ¼k .
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word string comparison diacritic-aware consistency check

(a)
É

�
¿

�
@↩aakl

l
É

�
¿


@↩akal


@↩ ��a ¼k �� Èl

l l l l ?

@↩ ¼k ��a Èl


@↩ ��a ¼k �� Èl

l ↗ ↗ ↗

@↩ ¼k ��a Èl

(b)
É¿�

�
@↩aukil

l
É

�
¿


@↩akal


@↩ ��u ¼k ��i Èl

l l l l ?

@↩ ¼k ��a Èl


@↩ ��u ¼k ��i Èl

l ↗ ↗ ↗

@↩ ¼k ��a Èl

Table 6. Arabic string comparison with consideration of partial diacritics

Sarf SAMA ElixirFM MADA+
TOKAN

MADAMIRA Beesley Fassieh

Application cus-
tomizable

X - - - - - -

Feature selection X - - - X - -

Run-on words X - - - - - -

Partial diacritics X - - - - X -

Affix segmenta-
tion

X - functional tokenization
schemes

statistical - -

Root-Pattern - - X - - X X

Automated dis-
ambiguation

- - - SVM SVM - maximum
aposteriori

Table 7. Comparison of Sarf with SAMA, ElixirFM, MADA+TOKAN, MADAMIRA,
Beesley, and Fassieh

6 Related work

In this section, we review work related to Arabic morphological analyzers, segmentation
correspondence, partial diacritics, and application specific analyzers.

Table 7 summarizes the comparison between Sarf and related Arabic morphologi-
cal analyzers. Only ElixirFM (Smrž, 2007), Beesley (Beesley & Karttunen, 2003), and
Fassieh (Attia, Rashwan, & Al-Badrashiny, 2009) provide root-pattern analysis of the stem.
ElixirFM, MADAMIRA (Pasha et al., 2014), and MADA+TOKAN (Habash, Rambow, &
Roth, 2009) are based on BAMA and SAMA and use functional and statistical techniques
to address the segmentation problem by reverse engineering the multiple tags of the af-
fixes. Sarf differs in that the segmentation is an output of the morphological analysis and
not a reverse engineering of the multi-tag affixes. Sarf is the only analyzer that addresses
the ’run-on words’ problem and solves it while performing the analysis. MADA+TOKAN,
MADAMIRA, and Fassieh apply morphological disambiguation using support vector ma-
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chines (SVM), and maximum a posteriori (MAP) estimation, respectively. Beesley and
Sarf consider partial diacritics to eliminate morphological solutions that are not in agree-
ment with the partial diacritization. Sarf provides an application customizable analyzer that
enables the developer to control and refine the analysis on the fly and filter the solution fea-
tures. MADA+TOKAN and MADAMIRA provides partial control over the output, and not
the analysis, where MADA+TOKAN allows the user to selected from several segmentation
schemes and MADAMIRA enables the user to select solution features.

Sarf builds upon the lexicon of Buckwalter(Buckwalter, 2002). SAMA is an updated
version of BAMA with increased lexicon coverage and additional POS tags (Maamouri,
Graff, Bouziri, Krouna, & Kulick, 2010). Sarf differs from Buckwalter and SAMA in that it
defines agglutinative and fusional affixes using a shorter list of affixes and a list of concate-
nation compatibility rules that allow prefix-prefix and suffix-suffix concatenations. This
allows Sarf to better maintain the morphological tags associated with the affixes.

Buckwalter(Buckwalter, 2002) and SAMA (Maamouri, Bies, Kulick, Zaghouani, et al.,
2010) produce a set of segmentation solutions for a word, compute the morphological so-
lutions for each segment, compute the product of the solutions, eliminates the incompatible
solutions, and then reports the valid solutions. Sarf traverses the affix and stem structures
with the input word character by character and keeps a stack of morpheme nodes. When a
morpheme node in a structure is met, it is checked for compatibility with the stack of nodes.
Consequently, Sarf generates only the solutions with valid segmentation, and reports only
those with compatible stem and affix concatenation.

SAMA was refined to interact with the ATB (Maamouri & Bies, 2004) project after the
addition of a large new corpus. The algorithmic changes in SAMA were done manually and
worked in integration with the ATB format. Our API approach allows for customizable re-
finements similar to the refinements of SAMA (Maamouri, Bies, Kulick, Zaghouani, et al.,
2010) and allows Sarf to interact with any application on the fly without the modification
of the morphological engine itself.

Like ElixirFM (Smrž, 2007), Sarf builds on the lexicon of the Buckwalter analyzer.
Sarf also uses deterministic parsing with tries and DAGs to implement the affix and stem
structures. We think that the inferential-realizational approach of ElixirFM that is highly
compatible with the Arabic linguistic description (Badawi, Carter, & Gully, 2004) can
benefit from many features unique to the Arabic language. Sarf leaves implementing that
to the developer customization through the API since in several cases the NLP application
that uses the morphological analyzer needs only a partial linguistic model of the Arabic
language.

MADA+TOKAN (Habash et al., 2009) is a toolkit for Arabic tokenization, diacritiza-
tion, morphological disambiguation, POS tagging, stemming, and lemmatization. Sarf per-
forms all those tasks except for morphological disambiguation where MADA uses SVM.
In Sarf, there is no need for a separate segmentor such as TOKAN since each solution
keeps a stack of positions that partition text into morphemes.

MADAMIRA is a tool for Arabic morphological analysis and disambiguation that is
based on the general design of MADA, an Arabic morphological analyzer and disam-
biguator, with additional components inspired by AMIRA (Pasha et al., 2014), a language
independent SVM based analyzer. MADAMIRA improves upon the two systems and re-
turns information selectively upon the request of the user. Sarf provides means for the
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developer to control and adapt the morphological analysis according to application needs.
Moreover, the API enables the developer to implement high level applications such as NER
which is provided by AMIRA.

Beesley (Beesley & Karttunen, 2003) compiles Xerox rules into specialized finite state
machine (FSM) based morphological analyzer. The number of machines generated by a
compiler for Xerox rules can not be controlled by the developer of the analyzer, and the
composition of the FSMs into a single framework is a difficult task (Beesley, 2001). Con-
sequently the efficiency of the resulting analyzer depends on the way the Xerox rules are
written. Writing application specific Xerox grammars and rules, or modifying the existing
ones, requires deep knowledge and insight from the NLP application developer in com-
pilation techniques, context free grammars, and morphological analysis. Sarf constructs a
framework of efficient structures that encode the stems and the agglutinative and fusional
affixes, respectively. Sarf also provides an application customizable API that allows the de-
veloper to control the analysis. Doing the equivalent with Beesley requires the modification
of the Xerox rules and the recompilation of the analyzer. Unlike Sarf, Beesley provides a
root-pattern analysis of the stem.

Fassieh is a commercial Arabic text annotation tool that enables the production of large
Arabic text corpora (Attia et al., 2009). The tool supports Arabic text factorization includ-
ing morphological analysis, POS tagging, full phonetic transcription, and lexical semantics
analysis in an automatic mode. Unlike Sarf, Fassieh provides morphological disambigua-
tion and root-pattern analysis. However, Fassieh does not provide segmentation of the affix
and reports it as a whole unit. This tool is not directly accessible to the research commu-
nity and requires commercial licensing. Sarf differs in that it is an open-source application
customizable tool that solves the affix segmentation and ’run-on words’ problems.

The work in (Attia, Toral, Tounsi, Pecina, & van Genabith, 2010) addresses the detection
of Arabic Multi-word Expressions (MWE). They define MWEs as ’idiosyncratic interpre-
tations that cross word boundaries or spaces’. Sarf adopts a similar approach for specific
entities such as person names, and place names.

Several researchers stress the importance of correspondence between the input string
and the tokens of the morphological solutions. Some work uses POS tags and a syntactic
morphological agreement hypothesis to refine syntactic boundaries within words (Lee et
al., 2011). The work in (Grefenstette, Semmar, & Elkateb-Gara, 2005)(Nasredine et al.,
2008) uses an extensive lexicon with 3,164,000 stems, stem rewrite rules (Darwish, 2002),
syntax analysis, proclitics, and enclitics to address the same problem. Parallel traversal
of the input string and the tokens of the morphological solution, while accounting for all
possible SAMA normalizations, partially solves the problem as reported in (Kulick et al.,
2010b; Maamouri et al., 2008). Later notes in the documentation of the ATB (Maamouri,
Bies, Kulick, Krouna, et al., 2010) indicate that extensive manual work is still required and
that later versions may drop the input tokens. (Lee et al., 2011) uses syntactic analysis to
resolve the same problem.

The survey in (Al-Sughaiyer & Al-Kharashi, 2004) compares several morphological
analyzers. Analyzers such as (Khoja, 2001)(Darwish, 2002) target specific applications in
the analyzer itself or use a specific set of POS tags as their reference. Sarf differs in that
it is a general morphological analyzer that reports all possible solutions. It is application



Sarf: Application Customizable Efficient Arabic Morphological Analyzer 19

Reason ATB TOKAN Frequency
(percent)

Dropping diacritics
�
AJ
»

Q�
Ó@āmyrkyāan AJ
»
Q�
Ó@āmyrkyā 1.456

Hamza normalization �
èQ

�
®

	
K

@↩anqrh �

èQ
�
®

	
K @ānqrh 2.799

Other normalizations é+
�
KPXA

	
ªÓmġādrt+h è+

�
èPXA

	
ªÓmġādrt+h 5.450

Removing letters ú



	
F+

	
JºËlkn+ny ù



+

	
JºËlkn+y 0.034

Adding letters �
�J


�
®j

�
JÊ+Ël+lth. qyq �

�J

�
®j

�
JËA+Ël+ālth. qyq 1.318

Total 11.058

Table 8. ATB-TOKAN segmentation disagreement examples

customizable in the sense that the API is used to control and prioritize the analysis, refine
the solution features, and associate morphemes with developer-defined categories.

The work in (Attia & Elaraby Ahmed, 2000; Beesley, 2001; Chaâben Kammoun et al.,
2010) considers partial diacritics and perform morphological disambiguation by filtering
the full morphological solutions and excluding inconsistent ones. This approach constructs
several solutions that will be excluded later. Sarf considers diacritic consistency at the mor-
pheme level instead of the final solution level. It checks for diacritic consistency between
the input morpheme and the candidate VMF features at every accept node during the traver-
sal of Sarf structures. Sarf analysis proceeds with the consistent VMFs and terminates the
inconsistent ones.

(Beesley, 2001), (Chaâben Kammoun et al., 2010), and (Attia & Elaraby Ahmed, 2000)
present analyzers that consider partial diacritics for morphological disambiguation. They
filter the output morphological analyses based on compatibility with input diacritics if
found. Sarf differs in that it considers the diacritics at morpheme boundaries to generate
only the diacritic matching solutions, rather than generating all morphological solutions
then filtering them.

7 Results

In this section we present and discuss the results of evaluating Sarf and compare it to ex-
isting morphological analyzers such as BAMA, SAMA, MADA+TOKAN, and ElixirFM.

We compared the segmentation capabilities of Sarf to that of SAMA and
MADA+TOKAN under the ATB v3.1. We also evaluated the presence of the BAMA and
SAMA inconsistencies of Tables 4 and 5 in the ATB v3.1 Part 3. Results show that the an-
notations of Sarf nearly perfectly agree with the manual annotations of the ATB v3.1. The
results also show that Sarf can automatically correct 0.76 percent of the ATB annotations
due to lexicon inconsistencies.

Moreover, we evaluated the efficiency of Sarf by measuring the size of the lexicons,
lexicon augmentation cost, and the runtime and accuracy performance of the analyzer.
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Conflict ∆word (percent) ∆analysis (percent)

POS 0.206 0.016
Gloss 8.317 3.226
WaFa 0.251 0.022
Total 8.774 3.264

Table 9. Effect of lexicon inconsistencies.

We compared the cost of augmenting Sarf with the question clitic (hamza

@↩ ) to that of

BAMA and SAMA. We also conducted two experiments to evaluate the performance of
Sarf compared to SAMA and ElixirFM. The experiments show the advantage of Sarfover
the other analyzers in terms of performance.

7.1 Segmentation correspondence

We evaluated the segmentation correspondence capabilities of Sarf under the segmentation
guidelines of the ATB v3.1. For each entry in the ‘before’ section of ATBv3.1 Part 3 with
a correct SAMA solution, we automatically computed the segmentation using Sarf and
compared the result to the segmentation in the ‘after’ entries that are manually validated
by the LDC.

SAMA had a correct morphological solution for 273,618 words out of 393,201 ATB
words. Those required later segmentation and manual validation. Our automatically gen-
erated segmentation agree with 99.991 percent with the oracle ATB segmentation. We
inspected the 25 entries for which our segmentation disagreed with ATB and found that

both segmentations were valid. For example, the entry A
�	
JÓmnā is formed of 	áÓ min/PREP

(from) and A
	
K nA/PRON 1P (us). Our segmentation is 	áÓ+ A

��� while that of ATB is A
�	
J+Ó. When

the morphemes are concatenated, the two 	
J consonants can be fused into a single one with

a shadda (��). Since it is common to omit the shadda, we are left with a single consonant at
the boundary, which can correspond to either morpheme.

When we performed the same experiment using TOKAN toolkit of the
MADA+TOKAN, we got a total of 88.942 percent agreement with ATB. When an-
alyzing the inconsistent instances, we noticed that TOKAN disregarded input diacritics. It
also performed its segmentation based on the POS tags of the morphological solutions in
a similar approach to that mentioned in (Maamouri et al., 2008). Table 8 shows examples
of the disagreement instances.

Since Sarf preserves correspondence when performing segmentation, it is capable of
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|Lp| |Rpp| |Lx| |Rxx| ∆
Z

L ∆
Z

R

BAMA 299 – 618 – 295 –
Agglutinative 70 89 181 123 1 32
With fusional 43 89 146 128 1 32
With grouping 41 7 146 32 1 1

SAMA 1325 – 945 – 1,296 –
Agglutinative 107 129 221 188 1 38
With fusional 56 129 188 194 1 38
With grouping 53 18 188 64 1 1

Table 10. Lexicon size comparison

generating a vocalized tag in the ATB ‘after’ dataset, which carries more information in
15.47 percent of the time than the counterpart POS derived vocalized entry. The vocalized
entry in the ‘after’ dataset was dropped because of maintenance and segmentation issues.
With Sarf that entry can be maintained.

7.2 Lexicon consistency

We evaluated the presence of the inconsistencies of Tables tables 4 and 5 in the ATBv3.1
Part 3. The first experiment considered the ATB entries that adopted the SAMA solution.
The rest of the entries have manually entered solutions. The gloss inconsistencies affect
0.76 percent of those entries.

The second experiment considered all tokens in the ATB with a SAMA solution. The
∆word column of Table 9 reports the ratio of the affected ATB words, and the ∆analysis

columns reports the ratio of the conflicting morphological analyses. One word might have
several morphological solutions which explains the difference. The rows report the effect
of the POS and gloss tags, and that of the wrong prefix entry d of Table 5. In total 8.774
percent of the words and 3.264 percent of the morphological solutions are affected. Sarf
automatically solves all these conflicts.

7.3 Lexicon size.

The |Lp|, |Lx|, |Rpp|, and |Rxx| entries in Table 10 report the sizes of the affix lexicons
and the number of concatenation rules of BAMA and SAMA. The entries also report the
effect of using agglutinative affixes and fusional rules on reducing the size. Sarf only re-
quires 226 and 323 entries to represent the 917 and the 2,270 entries of BAMA and SAMA
affixes with inconsistencies corrected, respectively. The transition from SAMA to BAMA
required the addition of 1,353 entries to the lexicons of SAMA. Sarf only required the ad-
dition of one order of magnitude less entries to accommodate an equivalent change. The
136 entries consisted of 12 more entries in Lp, 42 in Lx, 18 rules in Rpp, and 64 in Rxx.



22 F. Zaraket, A. Jaber, and J. Makhlouta

Augmentation. The question clitic, denoted by the glottal sign (hamza

@↩a ), is missing

in BAMA and SAMA as noted by (Attia, 2006). The ∆
Z

L and ∆
Z

R entries in Table 10 show
the difference in the number of additional affixes and rules needed to accommodate for the
addition of the question clitic. Our method only requires the addition of one atomic affix
and one fusional concatenation rule. Whereas BAMA and SAMA need 295 and 1,296
additional entries to their lexicons, respectively, Moreover, the process requires manual
intervention with a possibility of inducing inconsistencies in the process. This is evidence
that our method is better for the consistency and the maintenance of the lexicons.

7.4 Performance

We evaluated the accuracy and runtime efficiency of Sarf and compared that to SAMA
and ElixirFM with one of the applications (Zaraket & Makhlouta, 2012a) that used
Sarf as a back-end morphological analyzer. The hadith extraction application (Zaraket &
Makhlouta, 2012a) is concerned with analyzing a book of traditions related to prophet Mo-
hammad through a chain of narrators. Narrators are identified by composite proper person

names that are connected with family connectors. For example, the chain of narrators
QK
Q k.

	á « Y J
 ª � 	áK.
�
é J. �


�
J

�
¯ A

�	
J
�
K

�
Y gh. ddt

¯
nā qtybh bn s↪yd ↪n ǧryr , starts with the first

narrator YJ
ª� 	áK.
�
é J. �


�
J
�
¯qtybh bn s↪yd where �

é J. �

�
J
�
¯qtybh and YJ
ª�s↪yd are proper

person names. The word 	áK.bn (son of) indicates a parental relation that we will refer

to as family-connectors. The name QK
Qk. ǧryr is a proper person name denoting the

second narrator, and the words A
�	
J
�
K

�
Ygh. ddt

¯
nā (told us) and 	á«↪n (from/about) indicate a

narration relation and we refer to them as tell-connectors. Key to narrator detection
are morphological features that point to places such as names and location prepositions.

Table 11 reports the results of detecting morphological features that define proper names,
tell-connectors, and family connectors and compares the results with SAMA and ElixirFM
in terms of accuracy and running time. The table considers three books of hadith selected
arbitrarily (Al Kulayni, 1996; Al Tousi, 1995; Ibn Hanbal, 2005)4. All experiments used
a Linux operating system running on a dual core 2.66 Ghz 64-bit processor with 4GB of
memory.

Sarf scored higher recall for all the features and approximately similar precision across
the three books. The precision and recall measures of the family connectors in Sarf and
SAMA are close, unlike ElixirFM which reports lower accuracy measures. After analyz-
ing the results, it turned out that ElixirFM misses some gloss tags such as the ‘son’ tag

associated with the stem ‘ 	áK.bn ’. Sarf produces significantly higher proper name recall

4 We obtained the digitized books from online sources such as http://www.yasoob.com/ and
http://www.al-eman.com/.

http://www.yasoob.com/
http://www.al-eman.com/
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Al Kafi Al Istibsar Ibn Hanbal

Sarf SAMA ElixirFM Sarf SAMA ElixirFM Sarf SAMA ElixirFM

Proper
Names

precision 0.36 0.36 0.42 0.38 0.35 0.37 0.53 0.55 0.64

recall 0.95 0.83 0.77 0.96 0.81 0.73 0.98 0.79 0.76

Tell con-
nectors

precision 0.86 0.85 0.84 0.91 0.9 0.92 0.95 0.93 0.95

recall 0.99 0.99 0.99 0.99 1 1 1 1 1

Family
connec-
tors

precision 0.91 0.90 0.78 0.91 0.91 0.77 1 1 0.97

recall 1 1 0.41 1 1 0.42 1 1 0.69

Total precision 0.51 0.52 0.56 0.57 0.56 0.55 0.69 0.72 0.78

recall 0.97 0.92 0.77 0.98 0.92 0.74 0.99 0.90 0.83

Time (secs) 1.32 6.65 2.78×602 1.31 4.55 2.3×602 0.096 0.66 29.2×60

Table 11. Comparison of Sarf to SAMA and ElixirF using the hadith application

Temporal Hadith Biography Genealogy

Words 125,010 18,047,732 14,710,064 21,385

Without Solutions 4.33 5.41 5.61 4.63
API Time (secs) 12.45 45.21×60 133.17×60 2.89

With Solutions 1.74 1.82 2.12 2.44
API Time (secs) 2.39 22.64×60 31.77×60 0.41

Table 12. Morphological solutions per word ratio and runtime gains with the customizable
Sarf API utility.

measure compared to SAMA and ElixirFM. This mainly due to augmenting the stem lexi-
con of Sarf with proper names as explained in Section 2.

Sarf outperformed both SAMA and ElixirFM in running time even without the use of
the feature priority and the feature selection API. SAMA performed better than ElixirFM.

7.5 Sarf API

We evaluated the application customizable Sarf API with several applications that used
Sarf. Table 12 reports the number of morphological solutions per word and the runtime of
Sarf for several applications that use the application customizable Sarf API to refine the
analysis and compares that with the same applications without the use of the Sarf API. The
numbers show the utility of the Sarf API at improving the runtime and the efficiency of
NLP applications by an order or magnitude across the four applications.

In what follows, we shortly describe the applications. Detailed results including accuracy
measures can be found in the corresponding papers.
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The temporal entity extraction application uses finite state machines driven by mor-
phological features that indicate temporal units, intervals, quantities, and prepositions as
input (Zaraket & Makhlouta, 2012c). The application processed 43 articles arbitrarily se-
lected from local newspapers. The average number of solutions that Sarf reported per word
without the use of the API was 4.33 solutions per word. The application specific refine-
ments of the analysis implemented using the Sarf API eliminated solutions that the appli-
cation is not interested in and thus the number of solutions per word that Sarf ended up
reporting was 1.74 and that in turn resulted in a substantial improvement in runtime.

The hadith segmentation and extraction application extracts chains of narrators from
hadith books using finite state machines that take morphological features such as gloss
and POS tags that indicate proper names, family relations, tell-connections, places, and
possessive nouns as input (Zaraket & Makhlouta, 2012a). The application processed a
total of 41 books with a total of 196,171 narrations to build a graph where narrators are
nodes and their relation to each other are edges. Similarly to above, the number of solutions
per word improved from 5.41 to 1.82 and the runtime improved by more than half.

The biography application matches a narrator extracted from the hadith application
to corresponding biographies in biography books and extracts entities such as birth and
death dates, location, students, professors, and authentication qualifications (Zaraket &
Makhlouta, 2012a). The biography application uses narrator extraction and temporal ex-
traction, and in addition it uses morphological features that indicate qualifying adjectives
that relate to authenticity. The application used the graph generated from the hadith ap-
plication and processed 15 books of biographies with a total of 79,946 biographies to (1)
segment the biographies, (2) extract the narrators in the biographies, and (3) annotate the
narrator nodes in the graph with qualifiers extracted from the corresponding biographies.
The use of the Sarf API improved the solutions per word ratio from 5.61 to 2.12 and im-
proved the run time by almost a factor of 4.

The genealogy extraction application extracts a family tree and learns words that indi-
cate family relations from biblical texts. It uses morphological features that indicate proper
names, family relations, places, and professions (Makhlouta et al., 2012). The application
processed the book of Genesis with fifty verses. 21,385 words. The use of the Sarf API
improved the solutions per word ratio from 4.63 to 2.44 and improved the run time sub-
stantially.

8 Conclusion

This paper presents Sarf, an application customizable Arabic morphological analyzer. NLP
applications can implement the Sarf API to to refine the morphological analysis on the fly
by (1) selecting the interesting features, (2) prioritizing the features, and (3) accepting and
rejecting solutions on the fly based on partial features reported so far. Sarf represents affixes
using agglutinative and fusional morphemes which (1) significantly reduces the size of the
lexicons needed to represent Arabic morphology,(2) fixes inconsistencies in morphologi-
cal features corresponding to morphemes, (3) simplifies the maintenance and augmentation
of the affix morpheme lexicons, and (4) solves the segmentation correspondence problem
between the morphological solution and the original text. Sarf also allows the NLP appli-
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cation to use partial diacritics for morphological solution disambiguation, and solves the
‘run-on words’ problem. Sarf is available online as an open source tool.

In the future, we plan to improve Sarf by allowing root analysis of stems, supporting
inflectional stems, and providing a graphical user interface to allow the users to edit the
affix and stem morpheme lexicons of Sarf.
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