
European Journal of Operational Research xxx (2013) xxx–xxx
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Interfaces with Other Disciplines
Skill-based framework for optimal software project selection
and resource allocation
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.09.035

⇑ Corresponding author. Tel.: +961 1 350 000.
E-mail addresses: fz11@aub.edu.lb (F.A. Zaraket), mbo01@aub.edu.lb (M. Olleik),

ay11@aub.edu.lb (A.A. Yassine).

Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for optimal software project selection and resource allocation. Europea
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
Fadi A. Zaraket, Majd Olleik, Ali A. Yassine ⇑
Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon

a r t i c l e i n f o
Article history:
Received 8 November 2012
Accepted 24 September 2013
Available online xxxx

Keywords:
Resource allocation
Project selection
Software development
Software skills
Meta-heuristic
a b s t r a c t

This paper presents a conceptual framework and a mathematical formulation for software resource
allocation and project selection at the level of software skills. First, we introduce a skill-based framework
that considers universities, software companies, and potential projects of a country. Based on this
framework, we formulate a linear integer program PMax which determines the selection of projects
and the allocation of human resources that maximize profit for a certain company. We show that PMax
is NP-complete. Therefore, we devise a meta-heuristic, called Tabu Select and Greedily Allocate (TSGA), to
overcome the computational complexities. When compared to PMax running on CPLEX, TSGA performs
15 times faster with an accuracy of 98% on small to large size problems where CPLEX converges. On larger
problems where CPLEX does not return an answer, TSGA computes a feasible solution in the order of
minutes.

For demonstration, the proposed skill-based framework and the corresponding mathematical model
are applied to Lebanon by performing two surveys on the Lebanese software industry and academia.
The case study shows that the proposed framework and mathematical model can be used in practice
to improve project selection and resource allocation decisions in software companies.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The project management literature generously addressed re-
source allocation in general (Brucker, Drexl, Mohring, Neumann, &
Pesch, 1999; Herroelen & Leus, 2005; Herroelen, Reyck, & Demeu-
lemeester, 1998; Oezdamar & Ulusoy, 1995) and project portfolio
selection (Archer & Ghasemzadeh, 1999; Meade, 2002) as two sep-
arate problems. However, there is great room for suggesting mod-
els that solve the two interdependent problems simultaneously. In
particular, the authors in Gutjahr, Katzensteiner, Reiter, Stummer,
and Denk (2010), Yoshimuraa, Fujimia, Izuia, and Nishiwakia
(2006) present models to solve the two problems one after the
other assuming that the profitability of a chosen portfolio of pro-
jects is totally independent from the resources allocated on each
one of them. We argue that in reality, the cost of the development
of a project highly depends on the human workforce that works on
it (Acuna, Juristo, & Moreno, 2006).

Additionally, software specific studies concerning project
selection and resource allocation are still scarce (Otero, Centeno,
Ruiz-Torres, & Otero, 2009). The problem of resource allocation
in software project development is a unique challenge due to specific
characteristics of software projects and software developers (Kan,
1994). The work of Acuna et al. (2006) finds that human resource
allocation on software projects is generally left to the judgment
of experts such as software team leaders and project managers.
Although judgments are educated guesses that work in practice,
however, managers lack mathematical tools to develop and assess
project schedules and associated human resource allocation
(Padberg, 2001). In particular, Plekhanova (1999) and Otero et al.
(2009) observe that project managers map each software task to
one skill when allocating human resources to tasks. Otero suggests
that tasks should be mapped to several skills (Otero et al., 2009).
Ngo-The maps a task into a set of skills and optimally allocates
resources in release planning (Ngo-The & Ruhe, 2009).

In this paper, we propose a skill-based framework (SBF) that con-
siders software projects, software companies and software related
academia at the level of basic skills. That is, skills are the common
thread that cuts across these three domains and are therefore at
the center of our proposed framework. Educational processes, rep-
resented by universities, generate skills and form software develop-
ment human resources that can be categorized into talent classes.
Each talent class: S ´ L is characterized as a map from skills S to
a strength level L = {none,weak,average,good,excellent}. We charac-
terize software projects by collective strength levels of required
skills. The required skills and their associated levels are based on
expert estimations where experts are project managers and
n Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035
mailto:fz11@aub.edu.lb
mailto:mbo01@aub.edu.lb
mailto:ay11@aub.edu.lb
http://dx.doi.org/10.1016/j.ejor.2013.09.035
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor
http://dx.doi.org/10.1016/j.ejor.2013.09.035


2 F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx
software team leaders. We denote by potential projects those pro-
jects that can be developed in a given country. The process of
developing software requires skills. Companies in a given country
select from a set of potential projects. Each company then allocates
its human resources in the form of capita per talent class to
develop the selected projects. The company does the selection
and allocation with maximum profit as a target. Companies in turn
enrich their human resources via (1) strengthening existing skills
and (2) producing skills that are not covered in current curricula.
We assume that skills produced during development work will
eventually make it into curricula due to the interaction between
the industry and the academia. We refine our skill set S to include
the skills produced by the industry SI and assume none as the
strength level for fresh graduates in such skills.

Based on the above framework, we build an integer linear
program to optimally select a portfolio of projects and allocate re-
sources (i.e. talents) to them such that the allocated talents satisfy
the skills required by the selected projects. PMax differs from pre-
vious project selection and resource allocation methods (Gutjahr
et al., 2010; Yoshimuraa et al., 2006) in that it treats the resource
allocation and project selection as a single problem and presents
an integer linear program to solve it. PMax also provides a more
realistic cost estimation formula as it considers a company to
pay all its talents regardless of whether a talent is allocated or
not. Additionally, PMax differs from existing models (Gutjahr
et al., 2010; Otero et al., 2009; Yoshimuraa et al., 2006) in that it
introduces the concept of critical skills. A critical skill j for a project
p is a skill with a minimum level of expertise H[p][j], where at
least one allocated talent must possess to satisfaction a strength
in j P H[p][j], while other skills can be satisfied by strength levels
of several talents.

In this paper, we make several contributions to the software
management and operations research literature.

� We present SBF, a skill-based framework, to formalize the rela-
tionship between the software academia, the software industry
of a given country and the potential projects at the level of
skills. We formulate project selection and resource allocation
as a mathematical program, PMax, which allows for critical
skills and estimates cost more accurately.
� We introduce TSGA, a Tabu-based meta-heuristic, to overcome

the computational complexity of PMax since PMax is shown
to be NP-complete. We compare the performance of TSGA to
CPLEX. TSGA performs 15 times faster than CPLEX and reaches
an optimal solution 64% of the time. On average, the profit value
obtained from TSGA is 98% of the optimal profit obtained by
CPLEX.
� We conduct surveys covering the Lebanese software industry

and academia to demonstrate how SBF can be implemented.

2. Literature review

The paper draws upon various streams of research form project
management, analyses of skills and competencies required for soft-
ware product development, and software estimation models and
techniques. From the project management literature, we only focus
on the literature that combines project portfolio selection, activity
scheduling, and resource allocation. Although relevant, the volumi-
nous literature on resource constrained project scheduling prob-
lem, including multi-project and multi-mode versions, will be
ignored. Additionally, since our mathematical model is built on a
new skill-based framework, we also review literature describing
various skills and competencies required in a software develop-
ment environment. Finally, since our proposed model requires
the estimation of various input parameters relating to cost and
Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
duration of development activities, we also discuss these various
software estimation techniques in this section.

2.1. Resource allocation

Gutjahr et al. (2010) present a mixed integer non-linear pro-
gramming model for project selection and resource allocation
while focusing on increasing the competences of the staff through
experience. They decomposed the problem by applying a meta
heuristic for project selection and then a greedy priority based
heuristic for project scheduling and staffing. The main problem
resides in the assumption that the cost of development of a certain
project is assumed to be given independently of the resources that
the model allocates on it. PMax differs by incorporating the cost of
the allocated resources in the calculation of the project
development cost.

Yoshimuraa et al. (2006) tackle the problems of project
selection and resource allocation. They start by selecting the port-
folio of projects that maximizes profit. Then they allocate a project
leader for each project to end up with allocating the other human
resources. In this paper, we consider that project selection and re-
source allocation are two interdependent problems that should be
solved together.

Otero et al. (2009) presented a method that associates a set of
required skills with each software task for the completion of the
task. The method assigns available human resources to complete
the required tasks. Otero’s work addresses the situation when
the available resources fall short of covering the required skills
and minimizes the learning time based on rhetorical relations
between missing and available skills. PMax differs in that it
maximizes profit, extends skills to projects instead of tasks, and
considers project selection concurrently with resource allocation.

Xiao et al. (2009) consider the time and cost optimization
problem in project scheduling and present a near optimal genetic
algorithm. Ngo-The and Ruhe (2009) consider the release planning
problem in software development. They present an optimal
allocation of resources that maximizes the value gained from the
released features. Their solution does not isolate software release
planning from resource allocation across several releases to solve
the problem globally. They first compute an optimal solution for
a relaxed version of the problem, which they use with a genetic
algorithm to compute a near optimal solution for the original
problem.

Finally, Barreto et al. present a project manager with utility
functions to form a team that fits desired needs using constraint
satisfaction approach. The desired needs could optimize several as-
pects such as expense, performance, or size (Barreto, de O. Barros,
& Werner, 2008).

2.2. Cost estimation

There are two main approaches to software development effort
estimation: judgment-based methods using group consensus tech-
niques, and model-based methods using formal mathematical
models (Boehm, Abts, & Chulani, 2000). Expert judgment tech-
niques involve consulting with a group of software cost estimation
experts to use their past experiences and arrive at an estimate (or
to a consensus) for the cost and duration of the proposed project
(Jorgensen, 2005). Formal models, on the other hand, are designed
to provide some mathematical equations to perform effort
estimation. These mathematical models could be based on rules-
of-thumb, historical data, and analogies, and use inputs such as
lines of code, number of functions to perform, and other cost
drivers such as language, design methodology, skill-levels, risk
assessments. The algorithmic methods have been largely studied
and there are a lot of models that have been developed, such as
optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035


F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx 3
COCOMO models, the Putnam model, and function points based
models (Boehm et al., 2000). No one method is necessarily better
or worse than the other; in fact, their strengths and weaknesses
are often complimentary to each other (Jorgensen, Boehm, & Rifkin,
2009). Jorgensen shows that formal models have been somewhat
erratic, and do not provide higher accuracy than expert judgment
(Jorgensen & Shepperd, 2007). Expert judgment-based estimation
approaches are, by far, the most common used approaches by the
software industry (Jorgensen & Shepperd, 2007). There is no sub-
stantial evidence in favor of the use of estimation models. There
are even situations where expert estimates are expected to be
more accurate than formal estimation models (Jorgensen, 2004).
We adopt this point of view and rely on experts to populate the dif-
ferent parameters of PMax while keeping in mind the best prac-
tices for expert estimations (Jorgensen, 2004).
2.3. Software skills

Several researchers studied the software skill sets available in
the industry to understand the software development dynamics.
Andre, Baldoquin, and Acuna (2011) and Colomo-Palacios,
Tovar-Caro, Crespo, and Gomez-Berbis (2010) defined several soft-
ware development job positions and associated each position with
a set of required skills. The positions are ordered in a hierarchical
fashion, and a number of human resources with the needed skills
are mapped to the positions to form a team. This set of skills
includes technical skills, as well as a communication and team
management skills.

Acuna and Juristo (2004) consider the positions as roles and push
the mapping of positions to skills further. They consider psycholog-
ical traits suitable for playing the role and compute a correspon-
dence between software development roles and a likelihood of
needed personality features. Trigo et al. (2010) investigate the most
important software skills according to Chief Information Officers
(CIO) in Spanish and Portuguese software companies. They consider
10 high level skills and they conclude that the most important skills
are business knowledge and help desk/user support (Trigo et al., 2010).
In our skill-based framework, we differ from Colomo-Palacios and
Trigo in that we compute a granular set of detailed software related
skills based on the study of the academia. In particular, we compute
at least an order of magnitude larger skills set, where the skills are
well defined formally in terms of course objectives and syllabi.

Lethbridge (2000) and Kitchenham, Budgen, Brereton, and
Woodall (2005) try to determine the relevance of software skills
taught at academia to the industry needs. They categorize skills
into software engineering, scientific and general business and arts
skills. They survey software graduates about the importance of
their skills. The results reveal that programming languages are the
most important skills that are rightfully well taught at universities
while mathematical skills in general are taught more in depth than
what the developers actually needed at work. We follow the same
framework to generate software skills based on academia but we
address CIOs of software companies to collect information about
the employees of the companies. We refine our skill set based on
the feedback of the CIOs. Intuitively, this provides a better manage-
ment perspective of the value of skills. We also determine the
importance of skills by analyzing the needs of the software projects
developed in a certain country. We compare our findings for the
Lebanese case with Lethbridge and Kitchenham in the results
section.
3. Skill-based framework (SBF)

SBF is a novel framework that considers software projects, soft-
ware companies and software related academia at the level of basic
Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
skills. SBF analyses universities and their curricula, software
companies and their human resources, and potential software
projects and their requirements in terms of skills. SBF considers
the union of the skills taught at universities, strengthened
informally at work, produced at work, and required in potential
projects as the base skill set.

SBF partitions university graduates and current human
resources into talent classes. Each talent class is defined by a talent
class strength vector that determines the strength of a talent in all
skills. SBF represents the companies as talent class cardinality
vectors where an entry in a vector represents the number of hu-
man resources in a talent class. Software project requirements
are expressed in terms of required skills and strength in required
skills.

Fig. 1 shows how universities’ students build strength in
targeted skills. A university offers software curricula that teach
several courses. Each course has specific outcomes that either
develop existing software skills or teach completely new ones to
students. In SBF, we consider all software courses from local uni-
versities to compile a list of all covered software related skills.

Developers working in local companies are likely the graduates
of local universities, thus they possess a subset of the global skills
taught in the country. In addition, two developers might possess a
certain skill but with different strength levels. This might be due to
different educational tracks or due to different work experiences.
Thus, each developer possesses strength values in the compiled list
of skills that reflect his/her proficiency.

We classify developers into several talent classes reflecting
their skills and experiences. Developers belonging to the same
talent class possess the same strengths in all the skills. For exam-
ple, all developers belonging to talent class A possess a strength
of 5 in the human computer interaction (HCI) skill and a strength
of 4 in the object oriented programming (OOP) skill. Developers
from the same talent class have the same compensation rate.

On the other hand, the analysis of project requirements deter-
mines skills and strength levels in those skills that are required
for a successful completion of the projects. As shown in the right
side of Fig. 1, SBF maps each required skill per project to a required
strength level. The team working on a project must possess the
required strength level in all required skills to be eligible to work
on the project and complete within the set deadline. For example,
if project ‘‘Navigate’’ requires strength of 10 in HCI and 7 in OOP,
then a team of two developers from talent class A can work on it.

3.1. Determining strengths in skills

Academic programs are composed of a hierarchy of courses.
Some courses are required and others are left as electives. Each
course has a syllabus detailing its learning outcomes. We map a
learning outcome to one or more software skills. The term hosting
course of a set of skills denotes the course that teaches those skills.
Students acquire a different strength level in each software related
skill depending on several parameters.

� The choice of elective courses that the student takes indicates
the skills he/she possesses.
� Additionally, the performance of a student in a course, denoted

by perf, is directly related to the strength in the skills that the
course teaches.
� For a given skill, and a given course that hosts this skill, the

number of courses that consider the hosting course as a prere-
quisite, denoted by prereq, is indicative of how much the skills
taught in the hosting course are fundamental.
� Skills are more fundamental if they are required in several

courses. Intuitively, this means the skills are further sharpened
through repetition.
optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035


Fig. 1. Skill-based framework for the analysis of software projects, companies, and academia.

4 F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx
� Skills in courses with higher depth in the prerequisites graph
are given higher weights because they represent advanced
courses taught at advanced stages. The depth of a hosting course
corresponds to its position in the prerequisites graph and is a
good indicator of the level of the unique skills it introduces.

We propose to compute the strength of a student in a given skill
as follows.

strength ¼ perf � ð1þ prereqÞ � depth ð1Þ

Eq. (1) describes the strength of a human resource in a skill as a
product of performance, frequency of the skill in the curriculum
and the introduction level of the skill. The performance of a student
perf ranges over either passing (1), good (2), or excellent (3). We do
not consider weak students as we assume they do not make it into
the software development market.

The industry survey determines the performance of existing
human resources. The survey also ranks the existing human re-
sources based on experience. We compute the strength of skills
for existing human resources using Eq. (1) where perf represents
performance, depth represents rank, and prereq represents original
skills at hiring.

In SBF we compute the strength as in Eq. (1) and normalize the
strength value over the range 0 to H, where H represents the high-
est normalized strength in a given skill.

3.2. Talent classes

SBF computes several representative talent classes to partition
the talents generated by given universities. We considered two
groups of students in each software-related academic program.
In the first group, students take only the mandatory courses and
select not to take software related elective courses. In the second
group, students take the mandatory courses and all the software
electives. In each group of students there are excellent students,
good students and average students. This results in a total of six
talent classes for each program where the first extreme represents
the average students with only mandatory software related
courses, and the other extreme represents the excellent students
with all software related courses.

We assume that the rest of the students who do not belong to
one of the two groups, fall between them in one of the six talent
classes.

Given J skills, and K talent classes, we define M to be the talent
classes K � J matrix such that M[k][j] 2 [0,H] represents the
strength of a developer from talent class k in skill j, where
1 6 k 6 K, 1 6 j 6 J. We represent a software company as a set of
available human resources assumed all to be software developers.
Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
The human resources of a company are mapped to the set of talent
classes. For each company, we define the resources vector n of size
K such that n[k] is the number of software developers belonging to
talent class k.

Similarly, each company is assumed to pay salaries for its devel-
opers in accordance with the strengths they possess. Therefore, we
define the cost vector c of size K such that c[k] represents the
money that the company pays per unit time for a software devel-
oper belonging to talent class k.

3.3. Representation of projects

A software project with an associated revenue price is defined
by a set of requirement specifications communicated by the client.
The technical specifications detail the skills required to complete
the project, and also fix delivery deadlines. In SBF, we rely on
experts to formulate technical requirements into required skills
with required strength vectors of size J. We introduce the nominal
total strength matrix W, where P is the number of projects to con-
sider, such that W[p][j] represents the strength that project p
(1 6 p 6 P) requires in skill j.

In addition, SBF considers important skills by requiring that for
each important skill, at least one member of the development team
must have more than a required minimum. For this reason, we
introduce a critical skills requirements H matrix. The value
H[p][j] 2 [0,H] indicates that project p requires that at least one
developer in the development team allocated on p must possess
strength in j greater than or equal to H[p][j]. This allows our
framework to define some expertise requirements in skills depend-
ing on project needs.

The vector d of size P represents the deadlines of the projects
such that d[p] indicates how many yearly quarters are available
at time 0 before the deadline of p. The development team respects
the deadline of project p by finishing working on p before d[p].
Additionally, experts can estimate the nominal duration d[p] that
the development team needs to complete a given project p. We
denote by that the nominal duration vector d. Finally, vector p of
size P is the revenue vector where p[p] is the revenue that project
p generates.

4. Mathematical formulation – PMax model

Given P potential software projects and a set of available
software developers distributed over K software talent classes,
our objective is to select the portfolio of projects that maximizes
profit and allocates resources optimally amongst them so that all
selected projects are successfully completed before their deadlines.
Let T = max(d[1], . . . , d[p], . . . , d[P]) denote the planning horizon,
optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035


F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx 5
i.e. the last deadline of the set of projects. We use yearly quarters
as discrete time steps such that the allocation of resources occurs
at each quarter, i.e. resources may be re-allocated quarterly.

Table 1 presents a list of symbols used throughout this paper.
The resource allocation matrix A denotes the resources allocated
to projects throughout the quarters. A[t] is a matrix of size P � K,
i.e. each A[t][p][k] is one element of A[t] that denotes the number
of developers from talent class k working on project p during quar-
ter t,1 6 t 6 T. Matrix B denotes the total allocated strength matrix
such that

8t;B½t� ¼ A½t�:M ð2Þ

The binary indicator vector c of size P denotes the selected projects,
such that c[p] is 1 if project p is selected and 0 otherwise. The binary
selection matrix S denotes projects selected per quarter. The entry
S[p][t] is 1 if resources were allocated to project p in quarter t and
0 otherwise.

Our objective is to maximize profit with available resources.
Our decision variables are the entries of the A matrix. We also pres-
ent the variables in S and c, that are computable from A, as decision
variables to make the problem linear and we constrain them to A.
The total revenue R = c. p is the revenue associated with the set of
the selected and completed projects.

The binary indicator vector b of size T denotes the busy quar-
ters, i.e., b[t] is 1 if the resources were allocated in quarter t and
0 otherwise.

The total cost of development is defined as f ¼ c � n �
PT

t¼1b½t�
and is calculated as the sum of the costs of each quarter. We as-
sume that all employees receive salaries whether they are allo-
cated to work on a project or not. The cost is added to the total
cost if the company is working on at least one project during a cho-
sen quarter. Thus the profit Q becomes:

Q ¼ c � p� f ð3Þ

Constraint (C1) ensures that projects selected for work during a cer-
tain quarter have enough allocated resources in terms of total
strengths. We compute an integer linear constraint without logic
operations Li-1 that is equivalent to (C1). For each hp, ti pair, When
S[p][t] = 0, (C1) is satisfied. Similarly, so is "j.B[t][p][j] P 0 from
(Li-1) because B[t][p][j] is always greater than or equal to 0. When
S[p][t] = 1, (C1) and (Li-1) both get simplified to B[t][p][j] �
W[p][j] P 0. This proves the equivalence between (C1) and its
integer linear form (Li-1).

8p; t � ðS½p�½t� ¼ 1Þ ) ð8j � B½t�½p�½j�P W½p�½j�Þ ðC1Þ
Table 1
Table of symbols.

J Total number of skills
K Total number of talent classes
T Allocation horizon in quarters
P Total number of projects
R Total revenue
n Resources vector of size K
c Cost vector of size K
d Nominal duration vector of size K
d Deadline vector of size K
p Revenue vector of size P
c Project selection vector of size P
b Busy quarter vector of size T
M Talent classes matrix of size (K � J)
W Nominal total strengths matrix of size (P � J)
H Critical skills requirement matrix of size (P � J)
S Project selection matrix of size (P � T)
A Resource allocation matrix of size (T � P � K)
B Total allocated strengths matrix during of size (T � P � J)
e Very small positive number

Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
8p; t; j � B½t�½p�½j� � ðS½p�½t� �W ½p�½j�ÞP 0 ðLi-1Þ

Constraint (C2) ensures that projects not selected for work during a
quarter have no resources allocated to them. We do not provide a
linear form of constraint (C2) because we show in Theorem 1 that
(C2) is redundant at optimality.

8p; t � ðS½p�½t� ¼ 0Þ ) ð8k;A½t�½p�½k� ¼ 0Þ ðC2Þ

Constraint (C3) guarantees that when a project is selected, it is actu-
ally completed. That is the number of quarters allocated to work on
the project is at least equal to the number of nominal quarters
needed to complete the project. We compute (Li-3) as an integer
linear constraint version of (C3) in a similar manner to (Li-1). When
c[p] = 1, the bodies of the quantifiers in (C3) and (Li-3) are both
reduced to

PT
t¼1ðS½p�½t�ÞP d½p�. When c[p] = 0, (C3) and (Li-3) are

satisfied since T P d[p] and
PT

t¼1ðS½p�½t�ÞP 0.

8p � ðc½p� ¼ 1Þ )
XT

t¼1

S½p�½t�
 !

P d½p�
 !

ðC3Þ

8p �
XT

t¼1

S½p�½t� þ ðT � ð1� c½p�ÞÞP d½p� ðLi-3Þ

Constraint (C4) guarantees that we do not work on projects that are
not selected. We do not provide a linear form for (C4) because we
show in Theorem 1 that it is redundant at optimality. Constraint
(C5) ensures that allocated resources do not exceed available
resources.

8p � ðc½p� ¼ 0Þ )
XT

t¼1

½S½p�½t� ¼ 0

 !
ðC4Þ

8k; t �
XP

p¼1

A½t�½p�½k� 6 n½k� ðC5Þ

Constraint (C6) ensures that a project has no resources allocated to
it after its deadline. Constraint (C7) guarantees that the allocated
talents for a project contain at least one talent that satisfies the crit-
ical skills required to complete the project.

8p;t 2 ½d½p�;T� �S½p�½t� ¼0 ðC6Þ
8p; j;t � ðS½p�½t� ¼1^H½p�½j�>0Þ) 9k �A½t�½p�½k�>0^M½k�½j�P H½p�½j�ð Þ ðC7Þ

In order to write (C7) as a set of integer linear constraints, we intro-
duce a new four dimensional matrix of binary decision variables f.
(C7) is equivalent to the following four integer linear constraints.

8p; k; j; t � A½t�½p�½k� þ f ½t�½p�½k�½j� � S½p�½t�P 0 ðLi-7-1Þ

8p; k; j; t �M½k�½j� þ ðf ½t�½p�½k�½j� � S½p�½t�Þ �H½p�½j�P 0 ðLi-7-2Þ

8p; j; t �
XK

k¼1

f ½t�½p�½k�½j� 6 K � 1 ðLi-7-3Þ

8p; k; j; t � f ½t�½p�½k�½j� 2 f0;1g ðLi-7-4Þ

Constraints (C8) and (C9) enforce the relation between the busy
vector and the project selection matrix. In particular, if for a quarter
a company is not busy, then it has no projects selected in that quar-
ter. Otherwise, it has at least one project selected.

8t � ðb½t� ¼ 0Þ ) ð8p � S½p�½t� ¼ 0Þ ðC8Þ
8t � ðb½t� ¼ 1Þ ) ð9p � S½p�½t� ¼ 1Þ ðC9Þ

The integer linear form of (C8) is (Li-8). There is no need to present
the linear form of (C9) as shown in Theorem 1. When b[t] = 0, (C8) is
equivalent to "p � S[p][t] = 0, and (Li-8) is reduced to
8t �

PP
p¼1S½p�½t� 6 0. Given that S[p][t] P 0, then (Li-8) is equivalent
optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035


6 F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx
to
PP

p¼1S½p�½t� ¼ 0 and thus equivalent to (C8). When b[t] = 1, (C8) is
satisfied. Similarly (Li-8) is satisfied since P P

PP
p¼1S½p�½t�.

8t �
XP

p¼1

S½p�½t� � ðb½t� � PÞ 6 0 ðLi-8Þ

Constraint (C10) dictates the types of all the decision variables.

8t;8p;8k � A½t�½p�½k� 2 N; S½p�½t� 2 f0;1g; c½p� 2 f0;1g;b½t�
2 f0;1g ðC10Þ

Our objective is to select a portfolio of projects that the company
can complete successfully with maximum profit Q and minimum
effort subject to constraints (C1)–(C10). Note that effort
E ¼

PT
t¼1

PP
p¼1A½t�½p� � c is different from the cost f since cost consid-

ers the cost of employees for each quarter while effort ignores the
cost of an employee in quarters where he is not allocated to a
project. Thus, we formulate the objective function as shown in Eq.
(4) where e is a very small positive number.

OF ¼ c � p� f� e � E ð4Þ

Constraints (C2), (C4), and (C9) are subsumed by the optimization
as proven in Theorem 1 below, and consequently we relax our
problem and solve for

max
C1;C3;C5�C8;C10

c � p� f� e � E ðPMaxÞ

Theorem 1. Let System1 be PMax and let E1 be the set of solutions to
System1. Let System2 be maxC1-C10 (4) and let E2 be the set of solutions
to System2. We have E1 = E2.

Intuitively, maximizing profit guarantees (C9) and minimizing
effort guarantees (C2) and (C4), however the formal proof for The-
orem 1 is found in the Appendix available online.1

5. Complexity of PMax

We argue that PMax is NP-complete by reducing the knapsack
(KP) problem to an instance of PMax.

Let the number of skills J = 1, all the potential projects 1 6 p 6 P
have duration d[p] = 1, and let the deadline d[p] = 1. Let the number
of talent classes K = 1 indicating that M has only one entry M[1][1]
that we set to 1. Let c[1] = 0 (i.e. resources are available for free).
This special instance of PMax can be written as

max
c
ðc � pÞ ð5Þ

subject to

XP

p¼1

c½p� �W½p�½1� 6 n½1� ð6Þ

and where

8p;A½1�½p�½1� ¼ c½p� �W ½p�½1� ð7Þ

This is a 0–1 KP problem where W[p][1] is the weight of project
p, p[p] is its value and n[1] is the capacity of the knapsack. Any
solution to this problem is a solution to the KP problem. Given that
KP is NP-complete (Garey & Johnson, 1990), we conclude that
PMax has no deterministically polynomial algorithm as long as
there is no such a known algorithm for any of the NP-complete
problems. Let the number of skills J = 2, all the potential projects
1 6 p 6 P have duration d[p] = 1, and let the deadline d[p] = 1. Let
the number of talent classes K = 2. Let M[1][1] = M[2][2] = 1 and
M[1][2] = M[2][1] = 0. Let c[1] = c[2] = 0 (i.e. resources are available
for free). This instance of PMax can be written as
1 http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=pmax.

Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
max
c
ðc � pÞ ð8Þ

subject to

XP

p¼1

c½p� �W ½p�½1� 6 n½1� ð9Þ

XP

p¼1

c½p� �W ½p�½2� 6 n½2� ð10Þ

and where

8p;A½1�½p�½1� ¼ c½p� �W½p�½1� ð11Þ
8p;A½1�½p�½2� ¼ c½p� �W½p�½2� ð12Þ

This is a two dimensional KP problem. Therefore, PMax has no
known fully polynomial time approximation scheme (FPTAS)
(Kellerer, Pferschy, & Pisinger, 2004).
6. Tabu select and greedily allocate

Given the complexity of PMax, solving medium and large size
problems optimally is practically infeasible. The memory and
run-time requirements can vary tremendously depending on the
inherent complexity and the structure of the problem.

Problems of the real case size of J = 197, K = 12, P = 35 (as shown
later in Section 7) and with a relatively small number of developers
(in the order of tens) are sometimes infeasible if run on an 8 giga-
byte quad-core machine using CPLEX. This behavior is justified by
the NP-complete characteristic of the problem. For this reason, we
devise Tabu Select and Greedily Allocate (TSGA), a method that
implements a greedy allocation of resources on a set of chosen pro-
jects for completion then performs Tabu iterations on the project
selection vector to improve on company profit.

6.1. Tabu select

Tabu Select (TSel) is an application of the Tabu Search meta-
heuristic on the selection of projects problem. As introduced by
Glover (1989), Glover (1990), Tabu search takes a feasible solution,
a set of constraints, an objective function, a set of aspiration crite-
ria, and a set of stopping conditions. TSel explores the neighbor-
hood space of the feasible solution beyond local optimality to
improve on the value of the objective function. This means that
TSel allows intermediate worse objective values in the hope of
improving again later. Given a feasible solution of the problem,
Tabu search considers it as its current configuration then it inves-
tigates the neighboring candidate solutions. The candidate solution
that has the best objective and that does not break any Tabu
conditions is then considered as the new configuration. Tabu
moves are only allowed if the aspiration criteria are met. Mean-
while, TSel keeps track of the solution that generated the best
objective so far. The algorithm terminates when the stopping
conditions are satisfied.

We make use of TSel to determine the most profitable binary
project selection vector c⁄, thus a configuration is an instance of
c. We define a move to a neighboring solution as a single bit flip
in the configuration vector. The candidate moves are all the possi-
ble one-bit flips of the configuration vector resulting in candidate c
vectors. A Tabu list maintains all visited c configuration and
restricts revisiting it unless the aspiration criterion is met.

For Tabu Select, we define two aspiration criteria. We allow to
designate a Tabu candidate move as a new configuration only
when one of the following two events happens: (1) The profit asso-
ciated with this move is higher than the best profit reached so far.
(2) All candidate c vectors are Tabu.
optimal software project selection and resource allocation. European Jour-

http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=pmax
http://dx.doi.org/10.1016/j.ejor.2013.09.035


F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx 7
TSel terminates if one of the following stopping conditions
takes place:

� If the number of iterations (maxIterNum) is exceeded without
improving the best stored solution,
� When the allowed run time (maxRunTime) is exceeded,
� When all the candidate moves are Tabu for the maxTabuConf-

Num consecutive iteration.

6.1.1. Initial feasible solution
It is generally advisable that the initial feasible solution is com-

putationally easy to generate and of good quality (Glover, 1989).
Initially, TSel filters the infeasible projects. A project is feasible if
its required strength in each of the J skills does not exceed the com-
bined strength of the company resources in that skill and if its crit-
ical requirements are available in the company resources. For each
feasible project p, quarterVal[p] represents an estimation of the
quarterly profit associated with p. The value quarterVal[p] is equiv-
alent to the revenue of p per quarter of development reduced by an
estimate of the cost of the allocated resources on p.

quarterVal½p� ¼ p½p�
d½p� � quarterCost½p� ð13Þ

To estimate quarterCost[p], we determine first the skill jm that
maximizes W[p][j] over all skills. We assume that dividing
W[p][jm] by the average developer strength in jm gives us an esti-
mation of the number of developers that will work on p. We then
multiply this estimation of the number of developers by the
average salary (averageC) of a developer in the company in
question.

quarterCost½p� ¼ W ½p�½jm�
averageStr½jm�

� averageC ð14Þ

Feasible projects are added to the vector of feasible projects
feasibleProj ordered by the decreasing order of quarterVal.

During any phase of the solution, TSGA maintains a matrix F of
unallocated resources such that F[t][k] indicates the number of
unallocated developers belonging to class k during quarter t.

F½t�½k� ¼ n½k� �
XP

p¼1

A½t�½p�½k� ð15Þ

At startup, no allocations are yet made, thus "t, "k, F[t][k] = n[k].
After selecting a project p, Greedily Allocate (GAlloc) checks if p is
feasible given the matrix F. If p is feasible, GAlloc allocates resources
for p and modifies F removing the newly allocated resources on p. We
generate the initial feasible solution ci according to the following:

1. Start with ci = 0
2. Select the next p belonging to feasibleProj
3. If Greedily Allocate (GAlloc) can allocate resources for p, then let

ci[p] = 1
4. Goto 2

The initial project selection vector ci and the associated initial
allocation matrix Ai are then fed to the Tabu Select iterations. We
note here that if ci = 0, then no project is feasible and thus there
is no reason to continue and perform the iterations.

6.1.2. Tabu select iterations
The goal of TSel iterations is to move from one configuration to

the other aiming at improving the objective value. Algorithm 1 de-
scribes the iteration process. The decision variables c⁄ and A⁄ with
the associated profit Q⁄ denote the best answer that Tabu Select
has reached at any point in time.
Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
Initially, the best answer reached is the answer obtained from
the initial solution. Therefore c⁄ = ci, A⁄ = Ai and Q⁄ is the profit
associated with ci and Ai and is calculated as indicated in Eq. (3).

For each configuration vector cc, generateMutations () generates
the associated list of possible neighboring solutions. Each neigh-
boring (candidate) solution ccan differs by one bit from cc � ccan

either adds an additional project to be completed or deselects a
previously selected project. In the latter case, freeResources () frees
the allocated resources on the earlier selected project by removing
them from A and adding them to F.

In case ccan adds an additional project, GAlloc () either succeeds
in allocating resources for the additional project and returns true,
or fails and returns false. The list of feasible neighboring solutions
are stored in candidatesMap.

If the best neighboring solution has a profit above Q⁄, then it
becomes the next configuration and {Q⁄,c⁄,A⁄} are updated
accordingly. Otherwise, the neighboring solution that is not
contained in the tabuList and that has the highest profit Q is then
the next configuration. If no such neighboring solution is found,
then one of the Tabu neighbors is chosen at random to be the next
configuration by the choice () function.

Any chosen configuration that does not belong to tabuList is
added to this list. Iterations continue until one of the stopping
criteria is met. At the beginning of each iteration, F is reset to
represent the non-allocated resources in A. The function resetF ()
resets F according to Eq. (15).

Algorithm 1. (c⁄,A⁄,Q⁄) TSI (ci,Ai)// returns (c⁄,A⁄,Q⁄)

1: c⁄ = ci, A⁄ = Ai, Q⁄ = Q(ci,Ai), cc = ci, Ac = Ai //initialization
2: iterNum = 1, tabuConfNum = 0, tabuList = {}
3: StartTimer (runTime)
4:
5: while (iterNum < maxIterNum &&

tabuConfNum < maxTabuConfNum) do
6: candidatesMap.clear (), tabuCandidatesMap.clear ()
7: listccan = generateMutations (cc) // generate vectors one-

bit different from cc

8: for (ccan 2 listccan) do
9: if (runTime > maxRunTime) then

10: return (c⁄,A⁄,Q⁄)
11: end if
12: A = Ac

13: F = resetF (n,A)
14: p = indexOfNonZeroElement (ccan � cc)
15: if ((ccan � cc)[p] == � 1) then // if the mutation

removes a project
16: freeResources (p) // move resources of p from

A to F
17: else if (–g GAlloc (p,A)) then // GAlloc succeeds

and mutation adds a project
18: continue
19: end if
20:
21: Qcan = Q(ccan,A)
22: candidatesMap.insert ({Qcan,ccan,A})
23: end for
24:
25: while (candidatesMap.isEmpty () == false) do
26: {Qbest,cbest,Abest} = maxQcandidatesMap
27: if (Qbest > Q⁄) then
28: {Q⁄,c⁄,A⁄} = {Qbest,cbest,Abest}
29: break

(continued on next page)
optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035


8 F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx
30: end if
31: if (cbest 2 tabuList) then
32: candidatesMap.remove ({Qbest,cbest,Abest})
33: tabuCandidatesMap.add ({cbest,Abest})
34: end if
35: end while
36:
37: if (candidatesMap.isEmpty ()) then
38: {cc,Ac} = choice (tabuCandidatesMap)
39: tabuConfNum = tabuConfNum + 1
40: else
41: cc = cbest, Ac = Abest

42: tabuConfNum = 0
43: end if
44: iterNum = iterNum + 1
45: end while
46:
47: return (c⁄,A⁄,Q⁄)
2 The universities are in no specific order: the Lebanese University (LU), the
American University of Beirut (AUB), the Saint Joseph University (USJ), the Lebanese
American University (LAU), the Beirut Arab University (BAU), the Notre Dame
University (NDU), the Hariri Canadian University (HCU), the Lebanese International
University (LIU), and the Haigazian University (HU).

3 It is worth noting that there are 103 software development companies in Lebanon
and 11 of them agreed to complete the survey, i.e. 10.6% of the total number.
6.2. Greedily Allocate (GAlloc)

Greedily Allocate is called on Line 17 of Algorithm 1 to decide
whether a project p should be added to the list of chosen projects.
GAlloc starts by populating the vector of candidate quarters q that
includes the quarters during which p can be worked at. A quarter
earlier than d[p] is added to q if the combined strength of the unal-
located resources in it is at least equal to the strength that p re-
quires for all J skills and if the unallocated resources satisfy the
critical skills requirements for p. If the size of q is at least d[p], then
p is feasible. The complexity of the feasibility check of project p is
therefore O(d[p] � J � K).

GAlloc calculates for each quarter t from q the money value
MVal[t] of the resources already allocated during t. GAlloc selects
d[p] quarters from q starting with the quarters with the highest MVal.
Ties between two quarters are broken by choosing the one closer to
the deadline d[p] first. By selecting quarters with highest MVal, GAl-
loc tries to maximize a quarter usage by allocating as much resources
as possible during it before switching to less occupied quarters.

This process has implications on the cost of development since
allocating resources for an additional project during a previously
non-busy quarter (with MVal = 0) adds to the total cost of human
resources and makes the company pay salaries for all its develop-
ers during that quarter. Breaking ties by choosing quarters closer to
the deadline tries to free early quarters for other potential projects
with closer deadlines.

For the d[p] chosen quarters for working on p, GAlloc allocates
all the unallocated resources on p. Then it removes one resource
at a time without breaking feasibility conditions starting from
the talent class that has the highest salary and moving towards
the least costly ones. The allocation process has therefore a polyno-
mial complexity of O(d[p] � K �max (n)). Therefore, as a whole
Greedily Allocate has a polynomial complexity.

7. The Lebanese case study

We evaluate our skill-based framework and apply it on the
Lebanese academia and software industry. We perform two
surveys, one for the academia and one for the software companies,
following the guidelines presented in Section 3 to populate the
parameters of PMax.

7.1. Academia survey

In Lebanon, there is one public university and 31 licensed pri-
vate universities as per the Lebanese Ministry of Education
Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
(2012). We conducted surveys on nine universities that have the
highest enrollment rates in Lebanon.2 Each academic institution
offers one or more software related programs. We note the
distinction between bachelors of engineering (Computer Engineer-
ing, Electrical Engineering) and bachelors of science (Computer Sci-
ence, Information Technology). We study the academic programs
offered as indicated in Section 3 and we generate a list of software
skills and a set of talent classes.

7.2. Industry survey

According to Dal Hitti, the general manager of the Association of the
Lebanese Software Industry (ALSI), there are 103 software companies in
Lebanon. Half of them are of very small size comprising of 5 employ-
ees on average. A quarter of them are composed of 25–30 employees,
22% have an average size of 80 employees and the remaining 3% are
companies above 100 employees each (Hitti, 2011).

We contacted 35 software companies and 11 completed the
interview based industry survey.3 For each company, we parame-
trized the vectors n and c. Then each CIO provided us with detailed
information about a project that the company completed. This infor-
mation was used to populate the vectors d, d and p and the matrix
W. We ended up with 11 projects. Survey data is available online1.

We generalized and extended the set of projects collected from
the surveys by aggregating the required skills and the revenue and
formed a total of 35 projects that represent the Lebanese industry.
In particular, for each project p, we generated a bounding range of
two projects p1 and p2 where p1 required less skills and returned
higher revenue and p2 required more skills and returned less
revenue. We also generated two virtual projects to model the pro-
jects that the Lebanese industry might attract. One constituted an
upper bound on revenue with associated maximum skills require-
ments, and the other reflected minimum overhead with freelance
web development skills working for one yearly quarter. The reve-
nue associated with the latter is set to a small value that reflects
market conditions. From the academic survey we were able to
identify a comprehensive and granular skill set and a set of sample
talent classes that are dispatched into the technical workforce from
the academia in Lebanon. The skill set contains 197 skills which
cover software and software related skills taught in Lebanese aca-
demia. We rank these skills based on need and availability and we
report the most important ones in the online Appendix 1.

We classified these skills into 39 categories as displayed in
Table 2. They range from core software development to math
and electrical engineering. The sample set of talent classes contains
12 classes, 6 for engineering majors, and 6 for science degrees. The
talent classes range from taking the bare minimum set of required
core courses to taking all the software elective courses. The 11
surveyed companies employ 310 employees, from which 241 are
technical employees working in software development.
7.3. Results

For the 11 surveyed companies, we run PMax to determine the
optimal project selection vector c and the optimal resource
allocation matrix A. PMax provides us with the best performance
of the companies with their maximal profit. Table 3 shows the cost
and the selected projects for each one of the 11 companies after
optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035


Table 2
Skill categories.

Intro. to programming Numerical analysis techniques

Data Structures & Algorithms Communications Systems
Design & Analysis of Algorithms Computer Networks
Operation Systems Computer Organization
Database Systems Computer Architecture
Programming Language Design &

Implementation
Signals & Systems

Software Engineering Digital System Design
Advanced Algorithms & Data

Structures
Analog & Digital Circuits

Theory of Computation Electronics
Web Programming & Design Electric Machines & Power

Fundamentals
Human Computer Interaction Electromagnetics
Computer Graphics Electric Circuits
Computer-aided Geometric Design General Engineering Tools
Artificial Intelligence Basic Computer Software
Multimedia Programming Differential Equations
Network Programming Discrete Structures
Compiler Construction Linear Algebra
Multimedia Design Calculus & Analytic Geometry
Foundations of Digital Media Introduction to Probability &

Random Variables
Digital Imaging

F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx 9
running PMax on them in the ‘‘Cost (PMax)’’ and ‘‘Selected
projects’’ columns respectively.

Column ‘‘Difference in cost’’ estimates the savings resulting
from PMAX had the company decided to operate on the selected
projects without the advice of PMAX. We can see that even when
the optimal portfolio for several companies is the same (as is the
case for companies 1, 4 and 5 for instance), the associated cost
might be different. This is a direct implication of the difference in
human resource allocation between the different companies which
directly affects the development costs.
7.4. Discussion

We conducted a second industrial survey where we summa-
rized the results of PMAX for the eleven companies. The first ques-
tion in the survey queried the representatives on the feasibility of
the distribution of skills across selected projects as suggested by
PMAX.

The second question queried about the feasibility of the sche-
dule. The third question asked for a ranking of synergistic factors
that support or obstruct the results but that are not included in
the parameters of PMAX. Finally, the fourth and fifth question
asked about technical and know how skills existing in industry
Table 3
Costs of development.

Company CostPMax Selected projects Difference in cost

Company 1 215,440 1,35 261,868
Company 2 1,158,075 1,2,3,31,32,35 249,984
Company 3 752,400 1,28,31,35 1,273,938
Company 4 213,116 31,35 264,192
Company 5 353,464 31,35 123,844
Company 6 604,104 7,35 227,496
Company 7 510,524 31,35 192,333
Company 8 1,575,512 1,7,28,31,32,35 107,789
Company 9 901,948 1,35 282,052
Company 10 2,265,528 1,2,7,28,29,35 821,670
Company 11 1,561,340 1,2,35 869,243

Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
that are not covered or cannot be categorized under technical
and know how skills acquired at academy.

We passed the survey to representatives from the eleven
companies. Two of them replied. We also passed the survey with
additional descriptions of the companies to eight software
development professionals working in the industry at senior and
managerial positions and four of them replied.

All respondents agreed that the results of PMAX are feasible
and insightful in terms of allocating talent classes based on the
distribution of skills required by the project. They also agreed
that the schedules proposed by PMAX were feasible. Informally
they expressed their interest in using PMAX once it is developed
into an easy to use tool.

They listed and ranked several factors that they think are
essential to the success of the strategy and most of them were
first concerned with the availability of such projects in the mar-
ket currently open for the Lebanese companies. Their second
important concern was the feasibility of investment in develop-
ing the projects. A minority was concerned with the logistics to
run several big projects at once in a Lebanese company.

Several of them listed ‘‘shipping software’’ as a technical skill
that is not covered in academic training, next in importance they
listed ‘‘knowledge of specialized development platforms’’. They
also listed ‘‘testing and quality control’’, ‘‘handling error and
exceptional cases’’ and ‘‘handling engineering trade-offs’’ as skills
that are not covered in academic training. In retrospect, we
found out that those skills were listed as outcomes and objec-
tives in several advanced technical courses we have surveyed
in our academic survey in one form or another.

On know-how and non-technical skills the majority com-
plained about team work. The other complaints were related
to risk assessment and experience in client interface. Again,
these skills are listed in one form or another in advanced courses
we have surveyed in our academic survey. We understand the
complaints in the validation surveys as complaints on the
strength level in these skills which does not affect the validity
of our model. The validation survey and the tables are available
online1.

We also interviewed a selected group of CIOs to validate the
results and reflect on the proposed analysis framework. The CIOs
thought that they would make use of the model described in
this work if it is transformed into an easy to use tool and if it
is extended to provide dynamic measures of profit estimations.
Concerning the list of 197 software related skills, CIOs thought
that additional software skills might come from sources different
from academia and thus they think they must be incorporated in
the analysis. Additionally, they spelled the importance of non-
technical skills in the evaluation and classification of employees.
One CIO gave us access to the evaluation sheet of employees at
his company and we found out that 13 skills are common be-
tween his evaluation form and our skill list. In addition, he uses
other meta skills that map into sets of skills in our case. The
evaluation sheet contained further non-technical skills that we
do not consider in our analysis.
Table 4
Performance comparison between PMax and TSGA.

RunTimePMax
(seconds)

RunTime
(TSGA)
(seconds)

time(TSGA)/
timePMax

profit(TSGA)/
profitPMax

Min 15 0 0 81%
Max 5817 68 81% 100% In 64

out of 99
Average 532 15 6.7% 98%

optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035


Table 5
Medium and large problems.

Problem size RunTimePMax RunTime (TSGA) (second) time(TSGA)/timePMax profit(TSGA)/profitPMax

P = 70, N = 150 3553 second 51 1.4% 91.2%
P = 70, N = 180 563 second 76 13.5% 93.4%
P = 100, N = 250 36,387 second 255 0.7% 94%
P = 100, N = 280 mem-out 87 NA NA
P = 130, N = 250 mem-out 135 NA NA
P = 130, N = 310 mem-out 173 NA NA
P = 150, N = 280 mem-out 312 NA NA
P = 150, N = 460 mem-out 162 NA NA
P = 300, N = 540 mem-out 482 NA NA
P = 300, N = 660 mem-out 539 NA NA

Table 6
TSGA initial solution quality.

RunTime (Initial Solution)
(second)

profit(Initial Solution)/profitPMax
(%)

min 0 32
max 0.16 100
average 0.02 78

10 F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx
8. Evaluation of TSGA

We ran PMax and TSGA, on a 64-bit machine with 8 gigabyte of
memory and a quad-core CPU clocked at 2.8 gigahertz. The prob-
lems from the Lebanese industry were relatively small. The num-
ber of talent classes K was limited to 12, the number of project P
was set to 35 and the number of developers in a single company
ranged between 6 and 60.

Given these sizes, PMax, when run on CPLEX, required between
15 and 533 second to determine A and c with an average time of
75 second. Some problems exhausted 5 gigabyte of RAM to run
into completion. The problems are available online1.

After carefully tuning the parameters of TSGA, we set maxIter-
Num = 1000 � size(feasibleProj), maxTabuConfNum = size(feasibleP-
roj) and maxRunTime = 600seconds. Additionally, We do not put
any constraint on the size of the tabuList knowing that the memory
needs of TSGA are very modest and almost limited to this list. We
then run the same 11 problems using TSGA. We get an optimal
solution for 10 of the problems and a 99.75% of the optimal profit
on the last one. The run time of TSGA is on average 90% smaller
than the CPLEX run time.

To compare the actual performance of TSGA versus PMax, we
generated 100 problems with relatively the same size of the Leba-
nese industry. We kept the same talent classes derived from the
Lebanese cases and generated 35 random projects (P = 35). We also
generated for each problem a random number of talents that we
constrained to be less than 100. Then we distributed the talents
over the 12 talent classes.

We ran both PMax and TSGA on the 100 generated problems.
PMax ran into completion for 99 out of the 100 problems. [12]
For one of the problems, and after a run time of 26,800 second,
PMax exhausted all the RAM before exiting. For the other 99 prob-
lems, Table 4 summarizes the performances of PMax and TSGA.

TSGA performed almost 15 times faster than PMax and gener-
ated on average a profit valued at 98% of the optimal profit. Addi-
tionally, for the 99 comparative problems, TSGA reached the exact
optimal solution 64 times and the worst profit that it found was
19% below the optimal solution. We can see that PMax sometimes
needs a considerable amount of time (96 minute) to run into com-
pletion while the worst TSGA runtime was 68 second. The results
show that TSGA is performing well for small size problems when
compared to PMax.
Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
For industries larger than the Lebanese industry, benchmarking
TSGA against PMax is not possible because PMax will exhaust
memory and runtime resources before returning an optimal
solution.
8.1. Medium and large size problems

We generate larger problems that mimic industries larger than
the Lebanese industry to check how the performance of TSGA var-
ies with problem sizes. We present problems with increments of
the number of projects available P and the total number of talents
N, then we run both TSGA and PMax on the generated problems.

Table 5 shows that when PMax returns a solution, TSGA main-
tains its performance presented in Section 8. CPLEX exhausts mem-
ory resources without generating any feasible solution for
problems where P P 100 and N P 280. TSGA runtime is still very
reasonable and exits on functional stop conditions other than the
10 minute maxRunTime allowed for it. The largest two problems
we simulated maintained 2551 and 2235 c configurations in the
Tabu list and were solved in 2651 and 2235 iterations that took
28.32 and 32.65 second respectively. The detailed results are found
online.
8.2. Quality of TSGA initial solution

When Tabu search is used, it is advisable that the initial solution
is quickly computable and of good quality. A better initial solution
implies a better overall problem solution in general (Hasle, Lie,
Quak, & for industriell og teknisk forskning ved Norges tekniske
hogskole, 2007). For TSGA, the initial solution is very quickly
generated. After running the 100 benchmarking simulations, the
average time for generating the initial solution is 0.02 second. At
the same time, on average, the objective value of the profit ob-
tained from the initial solution is 78% of the optimal objective
found by CPLEX as shown in Table 6. This high value indicates that
the heuristic for generating the initial solution and that includes
calling Greedily Allocate is performing well.
9. Conclusion

In this paper, we proposed a skill-based representation of a
country over four analysis domains: universities, companies,
talents and projects. We showed how we can determine the soft-
ware skills that a country produces by analyzing the academic
programs of its different universities. We then presented a formal
methodology for ranking the strength of graduating students in the
different software skills.

We also introduced PMax, a project selection and a resource
allocation integer linear program that determines the optimal
portfolio of projects for a certain company and allocates resources
optimally among them.
optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035


F.A. Zaraket et al. / European Journal of Operational Research xxx (2013) xxx–xxx 11
We studied the complexity of PMax and we found them to be
NP-complete. For this reason, we introduced a meta-heuristic
based algorithm (TSGA) to outcome the difficulties of using PMax.

We showed how our methodology can be applied by performing
two surveys on the Lebanese software industry and academia. We
generated a list comprising of 197 software-related skills taught
in Lebanon and we compiled the most and the least needed ones
in the Lebanese industry. We collected real data about Lebanese
companies and software projects developed internally and we ran
PMax. We then evaluated the performance of TSGA comparing it
to PMax and we concluded that TSGA is running 15 times faster
than PMax with 98% accuracy. We showed that as opposed to PMax,
TSGA can scale easily when the size of the problems increases.

In practice, our methodology relies on expert opinions to for-
malize technical software project requirements into skill strength
requirements. It also relies on an up-to-date inventory of human
resources represented in terms of strengths in skills. This is com-
mon practice in software companies where every employee is re-
quired to update his/her Curricular Vitae according to a preset
template. It will be beneficial if in future work, an established mod-
el-based estimation method (for software development cost) is
used to validate the expert opinions. In future work, we will con-
sider a dynamic model that allows for skill growth based on re-
source allocation. If a resource x is allocated on a project p
requiring skill s for a period t. At the end of t, the strength of x in
s should increase and x might now belong to a different talent class
with a higher cost. In general, we hypothesize that an increase in
skill strength will increase the cost of the labor force, but at a great-
er benefit of allowing the company to bid for more challenging and
rewarding projects.

Acknowledgments

The authors would like to acknowledge the financial support of
the Lebanese national council for scientific research (LNCSR) and
Dar Al Handasah Endowment Fund for Research in Engineering.
The authors would also like to thank the CIOs of the Lebanese
companies that completed the surveys in particular Mr. Dal Hette
and Mr. Sami Slim.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejor.2013.09.035.

References

Acuna, S. T., & Juristo (2004). Assigning people to roles in software projects. Software
Practice and Experience, 34, 675–696.

Acuna, S. T., Juristo, N., & Moreno, A. M. (2006). Emphasizing human capabilities in
software development. IEEE Software, 23, 94–101.

Andre, M., Baldoquin, M. G., & Acuna, S. T. (2011). Formal model for assigning
human resources to teams in software projects. Information and Software
Technology, 53, 259–275.

Archer, N., & Ghasemzadeh, F. (1999). An integrated framework for project portfolio
selection. International Journal of Project Management, 17, 207–216.

Barreto, A., de O. Barros, M., & Werner, C. M. (2008). Staffing a software project: A
constraint satisfaction and optimization-based approach. Computers &
Please cite this article in press as: Zaraket, F. A., et al. Skill-based framework for
nal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.09.035
Operations Research, 35, 3073–3089 (Part Special Issue: Search-based Software
Engineering).

Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost estimation
approaches a survey. Technical report. Annals of Software Engineering.

Brucker, P., Drexl, A., Mohring, R., Neumann, K., & Pesch, E. (1999). Resource-
constrained project scheduling: Notation, classification, models, and methods.
European Journal of Operational Research, 112, 3–41.

Colomo-Palacios, R., Tovar-Caro, E., Crespo, A. G., & Gomez-Berbis, J. M. (2010).
Identifying technical competencies of it professionals: The case of software
engineers. International Journal of Human Capital and Information Technology
Professionals, 1, 31–43.

Garey, M. R., & Johnson, D. S. (1990). Computers and intractability: A guide to the
theory of NP-completeness. New York, NY, USA: W.H. Freeman & Co..

Glover, F. (1989). Tabu search, Part I. ORSA Journal on Computing, 1, 190–206.
Glover, F. (1990). Tabu search, Part II. ORSA Journal on Computing, 2, 4–32.
Gutjahr, W. J., Katzensteiner, S., Reiter, P., Stummer, C., & Denk, M. (2010). Multi-

objective decision analysis for competence-oriented project portfolio selection.
European Journal of Operational Research, 205, 670–679.

Hasle, G., Lie, K., & Quak, E., & for industriell og teknisk forskning ved Norges
tekniske hogskole, S. (2007). Geometric modelling, numerical simulation, and
optimization: Applied mathematics at Sintef. Springer Verlag.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and
research potentials. European Journal of Operational Research, 165, 289–306.

Herroelen, W., Reyck, B. D., & Demeulemeester, E. (1998). Resource-constrained
project scheduling: A survey of recent developments. Computers & Operations
Research, 25, 279–302.

Hitti, D. (2011). Personal communication with the manager of the association of the
lebanese software industry (ALSI).

Jorgensen, M. (2004). A review of studies on expert estimation of software
development effort. Journal of Systems and Software, 70, 37–60.

Jorgensen, M. (2005). Practical guidelines for expert-judgment-based software
effort estimation. IEEE Software, 22, 57–63.

Jorgensen, M., Boehm, B., & Rifkin, S. (2009). Software development effort
estimation: Formal models or expert judgment? IEEE Software, 26, 14–19.

Jorgensen, M., & Shepperd, M. J. (2007). A systematic review of software
development cost estimation studies. IEEE Transactions on Software
Engineering, 33, 33–53.

Kan, S. H. (1994). Metrics and models in software quality engineering (1st ed.). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc..

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Springer.
Kitchenham, B., Budgen, D., Brereton, P., & Woodall, P. (2005). An investigation of

software engineering curricula. Journal of Systems and Software, 74, 325–335.
Lebanese Ministry of Education, 2012. Universities in lebanon. <http://www.higher-edu.

gov.lb/english/default.htm>.
Lethbridge, T. C. (2000). What knowledge is important to a software professional?

Computer, 33, 44–50.
Meade, L. (2002). R&D project selection using the analytic network process. IEEE

Transactions on Engineering Management, 49, 59–66.
Ngo-The, A., & Ruhe, G. (2009). Optimized resource allocation for software release

planning. IEEE Transactions on Software Engineering, 35, 109–123.
Oezdamar, L., & Ulusoy, G. (1995). A survey on the resource-constrained project

scheduling problem. IIE Transactions, 27, 574–586.
Otero, L. D., Centeno, G., Ruiz-Torres, A. J., & Otero, C. E. (2009). A systematic

approach for resource allocation in software projects. Computers & Industrial
Engineering, 56, 1333–1339.

Padberg, F. (2001). Scheduling software projects to minimize the development time
and cost with a given staff. Asia-Pacific Software Engineering Conference, 0,
187–194.

Plekhanova, V. (1999). Capability and compatibility measurement in software
process improvement. In 2nd European software measurement conference.
Amsterdam, The Netherlands.

Trigo, A., Varajao, J., Soto-Acosta, P., Barroso, J., Molina-Castillo, F. J., & Gonzalvez-
Gallego, N. (2010). It professionals: An iberian snapshot. IJHCITP, 1, 61–75.

Xiao, J., Wang, Q., Li, M., Yang, Q., Xie, L., & Liu, D. (2009). Value-based multiple
software projects scheduling with genetic algorithm. In Q. Wang, V. Garousi, R.
Madachy, & D. Pfahl (Eds.). Trustworthy software development processes of
lecture notes in computer science (Vol. 5543, pp. 50–62). Berlin, Heidelberg:
Springer.

Yoshimuraa, M., Fujimia, Y., Izuia, K., & Nishiwakia, S. (2006). Decision-making
support system for human resource allocation in product development projects.
International Journal of Production Research, 44.
optimal software project selection and resource allocation. European Jour-

http://dx.doi.org/10.1016/j.ejor.2013.09.035
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0005
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0005
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0010
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0010
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0015
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0015
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0015
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0020
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0020
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0025
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0025
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0025
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0025
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0030
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0030
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0030
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0035
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0035
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0035
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0035
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0040
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0040
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0045
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0050
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0055
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0055
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0055
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0060
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0060
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0065
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0065
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0065
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0070
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0070
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0075
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0075
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0080
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0080
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0085
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0085
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0085
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0090
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0090
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0095
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0100
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0100
http://www.higher-edu.gov.lb/english/default.htm
http://www.higher-edu.gov.lb/english/default.htm
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0105
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0105
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0110
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0110
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0115
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0115
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0120
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0120
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0125
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0125
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0125
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0135
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0135
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0140
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0140
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0140
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0140
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0140
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0145
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0145
http://refhub.elsevier.com/S0377-2217(13)00790-X/h0145
http://dx.doi.org/10.1016/j.ejor.2013.09.035

	Skill-based framework for optimal software project selection and resource allocation
	1 Introduction
	2 Literature review
	2.1 Resource allocation
	2.2 Cost estimation
	2.3 Software skills

	3 Skill-based framework (SBF)
	3.1 Determining strengths in skills
	3.2 Talent classes
	3.3 Representation of projects

	4 Mathematical formulation – PMax model
	5 Complexity of PMax
	6 Tabu select and greedily allocate
	6.1 Tabu select
	6.1.1 Initial feasible solution
	6.1.2 Tabu select iterations

	6.2 Greedily Allocate (GAlloc)

	7 The Lebanese case study
	7.1 Academia survey
	7.2 Industry survey
	7.3 Results
	7.4 Discussion

	8 Evaluation of TSGA
	8.1 Medium and large size problems
	8.2 Quality of TSGA initial solution

	9 Conclusion
	Acknowledgments
	Appendix A Supplementary data
	References


