
MATAR: Morphology-based Tagger for Arabic

Fadi A. Zaraket Ameen Jaber
Department of Electrical and Computer Engineering

American University of Beirut
Email: {fz11,aaj15}@aub.edu.lb

Abstract—Computational linguistic and natural language pro-
cessing automation tasks require text annotated with tags that
represent the desired output of the task. The annotation tags serve
for training, validation, and evaluation. Arabic morphological
analysis, and tags associated with it such as part of speech and
gloss tags, is key to Arabic computational linguistics and natural
language processing. Several manual and automated tagging
tools exist for text. Very few exist that are based on Arabic
morphological analysis.

In this paper, we present an open source tagging tool with
visual interface that enables the construction of annotated Arabic
text corpora with automatic morphology-based tags. The tool
allows the specification of tags with Boolean formulae where the
atomic predicates are match and contain relations between the
morphological solution of part of the text and the value of a
morphological feature. The tool allows the user to directly enter
manual tags, to edit existing tags through a tag sensitive coloring
interface, to compare tag sets, and compute accuracy results.

Keywords: Tagging; Arabic; Natural language processing;
Morphological analysis; Computational linguistics.

I. INTRODUCTION

Computational linguistic (CL) and natural language pro-
cessing (NLP) tasks consider text documents and map the text,
or parts of it, to an output domain. Machine translation (MT),
for example, maps text to sentences in a second language.
Information extraction (IE) maps the text to entity categories.
Supervised learning techniques require training text that is
annotated with correct results to learn a computational model.
Supervised and unsupervised techniques require reference and
testing text that is annotated with correct results to evaluate
the accuracy of the technique [12], [9], [18].

An annotation, referred to as tag in the sequel, relates a
chunk of text to a label, or a tag type, that denotes a semantic
value of interest to the NLP task.

Morphological analysis (MA) is key to Arabic CL and NLP
even for simple tasks such as tokenization and stemming due
to the morphological richness of the Arabic language and due
to other problems such as missing short vowels, also known
as diacritics, which are usually omitted in text and inferred by
human readers [6]. Given an Arabic word delimited by white
space and punctuation, MA returns the internal structure of
the word composed of several morphemes including affixes
(prefixes and suffixes), and stems [1]. A morphological analyzer
returns a set of morphological solution vectors with features
such as prefix, stem, suffix, part of speech (POS), gloss,
and category tags. For example, Table I shows a sample

TABLE I. SOLUTION VECTOR FOR éÊ
�
¿

�
A
�
K
ya↩akulh .

Prefix Stem Suffix

Form �ø



ya É
�
¿

�
@↩akul èh

POS tag IV3MS+ VERB IMPERFECT IVSUFF DO:3MS
Gloss tag he/it eat/consume him/it

morphological solution for the word éÊ
�
¿

�
A
�
K
ya↩akulh 1. The POS

tags IV3MS and IVSUFF_DO:3MS indicate a third person
singular masculine subject pronoun attached to a verb, and a
third person singular masculine object pronoun attached to an
action verb, respectively. The verb has VERB_IMPERFECT as
a POS tag.

In this paper, we present an open source morphology-based
automatic tagger for Arabic (MATAR) that allows the specifi-
cation of tag types with Boolean formulae over morphological
features . Given a chunk of text t, Sarf, an in-house morpho-
logical analyzer [19], returns a set of morphological solutions
M(t) = {m1,m2, . . . ,mN} where each solution is a vector
of morphological features mi = 〈p, s, x, P,G,C〉, 1 ≤ i ≤ N
where p, s and x are the prefix, stem, and suffix and P,G
and C are the POS, gloss, and category tags, respectively.
The atomic terms in a tag type formula consist of identity
or containment predicates that relate the morphology solution
vector to a morphological feature. Informally, identity denotes
an exact match of the morphological feature, and containment
denotes the existence of the feature in the solution vector.

Given a sequence of text elements T = 〈t1, t2, . . . tM 〉, and
a set of tag types T with their formulae, MATAR uses Sarf
to compute the tags R ⊆ T ×T . MATAR displays the results
to the user using a visual interface with tag type sensitive
coloring. MATAR allows the user to manually edit the result
and build the corrected corpora. MATAR computes accuracy
measures such as inter annotation agreement, and precision and
recall, by comparing sets of tags and tag types. We used these
capabilities of MATAR to rapidly build reference corpora and
report accuracy results for several tasks [11], [20], [21].

MATAR has the following advantages.

• MATAR provides a novel and intuitive visual interface
to build Boolean formulae over morphological features
and thereafter compute automatic tags.

• MATAR allows the user to visually build category tag
sets based on morphology features. The categories can
later be used to define atomic terms in the formulae.

• MATAR provides the user with the ability to rapidly
create annotated Arabic text corpora with sophisticated

1In this document, we use the default ArabTeX transliteration style ZDMG.



morphology based tags.

II. RELATED WORK

The work in [5] presents an online supervised collaborative
effort towards morphological and syntactic annotation of the
Quran. The work in [4] presents a framework for interlingual
annotation of parallel text corpora with multi-level represen-
tations. An overview of annotation tools and their Arabic-
English word alignment issues concludes with a set of rules
and guidelines needed in an Arabic annotation alignment tool
[7]. The work in [8] presents the integration of the Standard
Arabic Morphological Analyzer (SAMA) into the annotation
workflow of the Arabic Treebank. Such tasks motivated us to
build MATAR, a morphology based open source annotation
tool for the Arabic language.

MMAX2 is a manual multi-level linguistic annotation tool
with an XML based data model [14]. It enables the user
to create, browse, visualize, and query annotations and may
be able to resolve co-reference tags. BRAT is a multi-lingual
user friendly manual web-based annotator that allows the
construction of entity and relation annotation corpora [17].
BRAT provides an API for automated annotators to provide
annotations. WordFreak is similar to BRAT. It supports Arabic
text and can be extended through a plug-in architecture to
integrate with NLP and CL tasks. The plug-in API may
enable the use of automatic annotators along with customized
visualization and annotation specifications [13]. AGTK is a
toolkit for the development of text and speech annotation
tools [10]. It provides import APIs from other data and
graphical user interface (GUI) components. The work in
[16] presents the extension of TrEd, a customizable general
purpose tree editor, with the Arabic MorphoTrees annotation.
The MorphoTrees present the morphological analyses in a
hierarchical organization based on common features. MATAR
differs from MMAX2, BRAT, WordFreak, AGTK, and TrEd in
that it allows the user to specify sophisticated tag types using
Boolean formulae of Arabic morphological features.

Fassieh is a commercial Arabic text annotation tool that
enables the production of large Arabic text corpora [3]. The
tool supports Arabic text factorizations including morpholog-
ical analysis, POS tagging, full phonetic transcription, and
lexical semantics analysis in an automatic mode. Fassieh is
not directly accessible to the research community and requires
commercial licensing. MATAR is open source and differs
in that it allows the user to build tag types using Boolean
formulae of several atomic terms.

Task specific annotation tools such as [2] uses enunciation
semantic maps to automatically annotate directly reported
Arabic and French speech. AraTation is another task specific
tool for semantic annotation of Arabic news using web ontol-
ogy based semantic maps [15]. We differ in that MATAR is
general, and not task specific, and it uses morphology based
features as atomic terms.

III. MATAR

MATAR takes a sequence of Arabic words T =
〈t1, t2, . . . , tM 〉 as input text, and a set of tag types
T with their formulae. MATAR is integrated with Sarf,
an in-house open source Arabic morphological analyzer

based on finite state transducers [19]. MATAR uses Sarf
to compute a set of morphological solutions M(ti) =
{m1,m2, . . . ,mN} for each word ti, 1 ≤ i ≤ M . Let
F = {P,S,X ,POS ,GLOSS ,CAT} be the set of prefix,
stem, suffix, POS, gloss, and abstract category tags in Sarf,
respectively. Each morphological solution m is of the form
〈p, s, x, P,G,C〉 where p ∈ P, s ∈ S, x ∈ X , P ∈ POS , G ∈
GLOSS , and C ∈ CAT .

Atomic terms: Let O = {isA, contains} be the
set of atomic term predicates. An atomic term a(M) in a
Boolean tag type formula takes the set of morphological
solutions M as input (free variable) and is of the form.
a(M) := ∃m ∈ M.m = 〈p, s, x, P,G,C〉.r1 ◦ r2 where
◦ ∈ O, r1 ∈ {p, s, x, P,G,C}, ∃A ∈ F .r1 ∈ A, r2 ∈ A.
Informally, an atomic term indicates that a solution vector
exists where a feature from the solution contains or exactly
matches a constant value for the feature specified by the user.

MATAR Boolean formulae are of the following form.

• a is a MATAR formula where a is an atomic term.

• ¬f is a MATAR formula where f is a Boolean for-
mula. This is interpreted as the negation (complement)
of words matching f .

• f ∨ g is a MATAR formula where f and g are
Boolean MATAR formulae. This is interpreted as the
disjunction (union) of words matching f with the
words matching g.

Tag type: The set of tag types T contains tuples of the
form 〈l, f, d〉 where l is a text label, f is a MATAR Boolean
formula, and d is a visualization legend. The legend contains
information such as the foreground and background colors, and
the name, family, and size of the font.

Evaluation: For each word ti ∈ T , MATAR computes
a Boolean value ({true, false}) for all atomic terms and
Formulae. Then MATAR computes the set of tags R ⊆ T ×T
such that (ti, ttj) ∈ R iff the Boolean formula Fj associated
with tag type ttj is true for ti.

Visualization: The visualization legends help the user
visually distinguish the tag type and the class. Entity legends
contain visualization information such as color and font. Re-
lational entity legends contain information such as from and
to arrows, edge labels, and frame lines.

IV. MATAR GUI

MATAR provides a user friendly interface to specify the
atomic terms, the MATAR Boolean formulae, the tag types,
and the legends. The MATAR GUI also allows the user
to modify and correct the resulting tag set R and compute
accuracy results that compare different tag sets. The accuracy
results serve well as inter annotation agreement results when
the tag sets come from two human annotators, or as evaluation
results for learning and information extraction techniques.

The snapshot in Figure 1 shows the MATAR GUI with
the tag type color sensitive view, the tag list view, and the
tag description view. In the shown example, the user specified
three tag types with labels “Adjectives”, “VERBPERFECT”,
and “Places”. The “VERBPERFECT” tag type is based on a



Fig. 1. MATAR main window with annotated text, tag descriptions, tag type legend properties, and manual tag edition menus.

simple formula that inspects the POS tag of the stem of the
word. The “Adjectives” tag type is built on a formula that
computes a disjunction between POS tags of the stem and the
suffixes to include possessive forms as adjectives. The “Places”
tag type is based on an abstract category specified by the user
as a collection of stems and phrases.

The context sensitive menus in Figure 1 allow the user
to manually change ore remove the tag of a selected word.
The MATAR GUI also allows manual tag types that are not
based on morphological features. These tags enable the users
to build their own reference corpora without help from the
morphological analyzer.

A. Morphology based tag type editor

The morphology based tag type editor shown in Figure 2
allows the user to write a tag type Boolean formula in a
user friendly manner. The user first specifies atomic terms
by selecting a feature from F . The pattern is a regular
expression that filters the feature values. This implicitly helps
the user specify an exact versus a partial match of the desired
morphological feature value.

Then the user can add the selected feature values to the
atomic terms under the tag type name. The feature column
has a context sensitive menu that allows negating the term. The
value column has a context sensitive menu that can switch the
operation between the values in O = {isA, contains}. The
right pane shows a description of the tag type and a set of
legend descriptors.

For example, the user can select the feature category and
associate it with the value temporal unit. Multiple feature/value
pairs can be included in a single tag type definition with a
disjunction semantics.

B. Automated Tagging

MATAR provides automatic tagging based on an Arabic
morphological analyzer, Sarf. When the user triggers the
automatic tagger, Sarf processes the text one word at a time.

For each word, Sarf produces all valid solutions and returns
the corresponding solution vectors. MATAR evaluates the
Boolean formulae for each of the solutions and highlights the
corresponding tags.

C. Analysis

In addition to automatic and manual tagging, MATAR
allows comparing tag sets and tag types applied to the same
input text. MATAR comparator takes as input two tag sets
R1 and R2 and two tag type sets T1 and T2. It produces a
difference view for the tag types and a difference view for the
tag sets. The tag type difference view shows the common tag
types T1 ∩ T2, the tag types in T1 and not in T2, and the tag
types in T2 and not in T1.

Similarly, the tag set difference view shows R1 ∩ R2,
R1/R2 and R2/R1. The tag set difference view also shows
the precision, recall and F-measure between the two sets. The
metrics can be computed based on several predicates. The
“Intersection” predicate returns true if a tag from R1 intersects
in text T with a tag in R2. The “Exact” predicate returns true
if a tag from R1 exactly matches a tag in R2. The “A includes
B” predicate returns true if a tag from R1 contains a tag from
R2. Finally, the “B includes A” predicate returns true if a tag
from R2 contains a tag from R1.

In the difference view panes, the user can select a difference
tag and accept it, or reject it to build a corrected corpora.

V. CONCLUSION

In this paper, we present MATAR, an open source
morphology-based automatic tagger for Arabic. The tool en-
ables the user to perform automatic and manual tagging.
The user can define general purpose tag types or customized
morphological tag types and tag chunks of text. The automatic
tagging is based on Sarf, an Arabic morphological analyzer,
and the resulting tags can be edited by the user. Moreover, the
tool enables the user to compare two tag sets and returns statis-
tical accuracy results including precision and recall measures.
In the future, we plan to enhance the annotation capabilities



Fig. 2. MATAR tag type Boolean formula editor.

of the tool by enabling the definition of rule based complex
tag types along with actions performed on them.

REFERENCES

[1] Imad A Al-Sughaiyer and Ibrahim A Al-Kharashi. Arabic morpho-
logical analysis techniques: A comprehensive survey. Journal of the
American Society for Information Science and Technology, 55(3):189–
213, 2003.

[2] Motasem Alrahabi, Amr Helmy Ibrahim, and Jean-Pierre Desclés.
Semantic annotation of reported information in Arabic. FLAIRS 2006,
Floride, 11-13 Mai, 2006.

[3] Mohamed Attia, M Rashwan, and MASAA Al-Badrashiny. Fassieh¯,
a semi-automatic visual interactive tool for morphological, pos-tags,
phonetic, and semantic annotation of Arabic text corpora. Audio,
Speech, and Language Processing, IEEE Transactions on, 17(5):916–
925, 2009.

[4] Bonnie J Dorr, Rebecca J Passonneau, David Farwell, Rebecca Green,
Nizar Habash, Stephen Helmreich, Eduard Hovy, Lori Levin, Keith J
Miller, Teruko Mitamura, et al. Interlingual annotation of parallel
text corpora: a new framework for annotation and evaluation. Natural
Language Engineering, 16(3):197, 2010.

[5] Kais Dukes, Eric Atwell, and Nizar Habash. Supervised collaboration
for syntactic annotation of quranic Arabic. Language Resources and
Evaluation, pages 1–30, 2011.

[6] Nizar Habash and Fatiha Sadat. Arabic preprocessing schemes for
statistical machine translation. 2006.

[7] Hisham A Kholidy and N Chatterjee. Towards developing an Arabic
word alignment annotation tool with some Arabic alignment guidelines.
In Intelligent Systems Design and Applications (ISDA), 2010 10th
International Conference on, pages 778–783. IEEE, 2010.

[8] Seth Kulick, Ann Bies, and Mohamed Maamouri. Consistent and
flexible integration of morphological annotation in the arabic treebank.
Language Resources and Evaluation (LREC), 2010.

[9] Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki.
The penn arabic treebank: Building a large-scale annotated arabic
corpus. In NEMLAR Conference on Arabic Language Resources and
Tools, pages 102–109, 2004.

[10] Kazuaki Maeda and Stephanie Strassel. Annotation tools for large-
scale corpus development: Using agtk at the linguistic data consortium.
In Proceedings of the Fourth International Conference on Language
Resources and Evaluation, 2004.

[11] Jad Makhlouta, Fadi A. Zaraket, and Hamza Harkous. Arabic entity
graph extraction using morphology, finite state machines, and graph
transformations. In Computational Linguistics and Intelligent Text
Processing, CICLing, pages 297–310, 2012.

[12] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
Building a large annotated corpus of english: The penn treebank.
Computational linguistics, 19(2):313–330, 1993.

[13] Thomas Morton and Jeremy LaCivita. Wordfreak: an open tool for
linguistic annotation. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for Computational
Linguistics on Human Language Technology: Demonstrations-Volume
4, pages 17–18. Association for Computational Linguistics, 2003.

[14] Christoph Müller and Michael Strube. Multi-level annotation of lin-
guistic data with MMAX2. Corpus technology and language pedagogy:
New resources, new tools, new methods, 3:197–214, 2006.

[15] Layan M Bin Saleh and Hend S Al-Khalifa. AraTation: an Arabic
semantic annotation tool. In Proceedings of the 11th International
Conference on Information Integration and Web-based Applications &
Services, pages 447–451. ACM, 2009.

[16] Otakar Smrz and Petr Pajas. Morphotrees of arabic and their annotation
in the tred environment. In Proceedings of the NEMLAR International
Conference on Arabic Language Resources and Tools, pages 38–41,
2004.

[17] Pontus Stenetorp, Sampo Pyysalo, Goran Topic, Tomoko Ohta, Sophia
Ananiadou, and Jun’ichi Tsujii. Brat: a web-based tool for nlp-assisted
text annotation. EACL 2012, page 102, 2012.

[18] Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer. The penn
chinese treebank: Phrase structure annotation of a large corpus. Natural
Language Engineering, 11(2):207, 2005.

[19] Fadi Zaraket and Jad Makhlouta. Arabic morphological analyzer
with agglutinative affix morphemes and fusional concatenation rules.
In Proceedings of COLING 2012, pages 517–526, Mumbai, India,
December 2012.

[20] Fadi A. Zaraket and Jad Makhlouta. Arabic cross-document NLP for
the hadith and biography literature. In Florida Artificial Intelligence
Research Society Conference (FLAIRS), Marco Island, Florida, May
2012.

[21] Fadi A. Zaraket and Jad Makhlouta. Arabic temporal entity extraction
using morphological analysis. International Journal of Computational
Linguistics and Applications (IJCLA), 3:121–136, 2012.


