

VOLUME ONE HUNDRED AND THREE

ADVANCES IN

COMPUTERS

This page intentionally left blank

VOLUME ONE HUNDRED AND THREE

ADVANCES IN

COMPUTERS

Edited by

ATIF M. MEMON
College Park, MD, United States

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier

50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

525 B Street, Suite 1800, San Diego, CA 92101-4495, United States

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

125 London Wall, London, EC2Y 5AS, United Kingdom

First edition 2016

Copyright © 2016 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or any information storage and

retrieval system, without permission in writing from the publisher. Details on how to seek

permission, further information about the Publisher’s permissions policies and our

arrangements with organizations such as the Copyright Clearance Center and the Copyright

Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by

the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and

experience broaden our understanding, changes in research methods, professional practices,

or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in

evaluating and using any information, methods, compounds, or experiments described

herein. In using such information or methods they should be mindful of their own safety and

the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,

assume any liability for any injury and/or damage to persons or property as a matter of

products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-809941-4

ISSN: 0065-2458

For information on all Academic Press publications

visit our website at https://www.elsevier.com/

Publisher: Zoe Kruze

Acquisition Editor: Zoe Kruze

Editorial Project Manager: Shellie Bryant

Production Project Manager: Surya Narayanan Jayachandran

Cover Designer: Greg Harris

Typeset by SPi Global, India

http://www.elsevier.com/permissions
https://www.elsevier.com/
https://www.elsevier.com/

CONTENTS

Preface vii

1. How Elasticity Property Plays an Important Role
in the Cloud: A Survey 1

M.A.N. Bikas, A. Alourani, and M. Grechanik

1. Introduction 2

2. Cloud Elasticity 3

3. Existing Cloud Elasticity Solutions 7

4. Existing Research Issues of Cloud Elasticity 12

5. How Elasticity Can Be Improved in the Cloud 17

6. Conclusion 23

References 23

About the Authors 29

2. Input-Sensitive Profiling: A Survey 31

A. Alourani, M.A.N. Bikas, and M. Grechanik

1. Introduction 32

2. Input-Sensitive Profiling Challenges 33

3. Recent Researches on Input-Sensitive Profiling 34

4. Related Work 44

5. Conclusion 47

References 48

About the Authors 51

3. Recent Advances in Regression Testing Techniques 53

H. Do

1. Introduction 53

2. Background 54

3. Recent Advances in Regression Testing Techniques 56

4. Conclusions 71

References 72

About the Author 77

v

4. Coverage-Based Software Testing: Beyond Basic
Test Requirements 79

W. Masri and F.A. Zaraket

1. Introduction 80

2. Definitions 81

3. Early Techniques: Basic Coverage Criteria 82

4. Early Techniques: Advanced Coverage Criteria 85

5. Early Techniques: Profiling for Basic Coverage 89

6. Efficient Profiling for Path Coverage 92

7. Test Case Generation for Path Coverage 98

8. Test Suite Minimization: Covering Complex tr's 103

9. Test Suite Minimization: Covering Combinations of Basic tr's 118

10. PBCOV: Property-Based Coverage Criterion 124

11. UCov: User-Defined Coverage Criterion 130

12. Conclusion 139

References 140

About the Authors 142

Author Index 143

Subject Index 151

Contents of Volumes in this Series 157

vi Contents

PREFACE

This volume of Advances in Computers is the 103rd in this series. This series,

which has been continuously published since 1960, presents in each volume

four to seven chapters describing new developments in software, hardware,

or uses of computers. I invite leaders in their respective fields of computing

to contribute a chapter about recent advances.

Volume 103 focuses on four important topics. In Chapter 1, entitled

“How elasticity property plays an important role in the cloud: a survey,”

Bikas et al. discuss how a cloud environment allows consumers to deploy

and run their software applications on a sophisticated infrastructure that is

owned and managed by a cloud provider (eg, Amazon Web Services,

Microsoft Azure, and Google Cloud Platform). These cloud users acquire

resources for their applications on demand and pay only for the consumed

resources. In order to take this advantage of cloud computing, it is vital for a

consumer to determine if the cloud infrastructure can rapidly change the

type and quantity of resources allocated to an application in the cloud

according to the application’s demand. This property of the cloud is known

as elasticity. Ideally, a cloud platform should be perfectly elastic, ie, the

resources allocated to an application exactly match the demand. This allo-

cation should occur as the load to the application increases, with no degra-

dation of applications response time, and a consumer should pay only for the

resources used by the application. However, in reality, clouds are not per-

fectly elastic. One reason for that is it is difficult to predict the elasticity

requirements of a given application and its workload in advance, and opti-

mally match resources with the applications needs. This chapter investigates

the elasticity problem in the cloud, and explains why it is still a challenging

problem to solve and consider what services current cloud service providers

are offering to maintain the elasticity in the cloud. Finally, the chapter dis-

cusses research that can be used to improve elasticity in the cloud.

In Chapter 2 entitled “Input-sensitive profiling: a survey,” Alourani et al.

present a broad overview of input-sensitive profiling, which is an automated

analysis technique that calculates the resource usages (eg, the memory and

the CPU usage) by methods during program execution for different com-

binations of input values. In addition to enabling developers to estimate the

time and space complexities of a program, input-sensitive profiling also

allows developers to automatically detect bottlenecks during performance

vii

testing, where the performance of a program suddenly worsens for a partic-

ular combination of input parameter values. One of the important advan-

tages of this profiling technique is to identify what methods consume

more resources (eg, CPU and memory usages) for specific combinations

of input values and pinpoint why these methods are responsible for intensive

execution time. Hence, developers can understand and optimize perfor-

mance problems in a program and they can predict how likely that a program

might not scale with increasing the size of the input (eg, addingmore users or

a larger set of values for a given input parameter). Unfortunately, it is very

difficult to identify specific input values from a large number of combina-

tions that lead to performance degradation of programs. This chapter

explores the input-sensitive profiling problem and discusses its challenges.

Some recent contributions of input-sensitive profiling algorithms that were

developed to detect performance bottlenecks of a program are investigated

and summarized.

Chapter 3, entitled “Recent advances in regression testing techniques,”

by Do covers the space of software systems and their environments that

change continuously. They are enhanced, corrected, and ported to new

platforms. These changes can affect a system adversely; thus software engi-

neers perform regression testing to ensure the quality of the modified sys-

tems. Regression testing is an integral part of most major software

projects, but as projects grow larger and the number of tests increases, per-

forming regression testing becomes more expensive. To address this prob-

lem, many researchers and practitioners have proposed and empirically

evaluated various regression testing techniques, such as regression test selec-

tion, test case prioritization, and test suite minimization. Recent surveys on

these techniques indicate that this research area continues to grow, heuristics

and the types of data utilized become diverse, and wider application domains

have been considered. This chapter presents the current status and the trends

of three regression testing techniques, and discusses recent advances of each

technique.

Finally, Chapter 4, entitled “Coverage-based Software Testing: Beyond

Basic Test Requirements,” byMasri and Zaraket posits that code coverage is

one of the core quality metrics adopted by software testing practitioners

nowadays. Researchers have devised several coverage criteria that testers

use to assess the quality of test suites. A coverage criterion operates by first

defining a set of test requirements that need to be satisfied by the given test

suite, and second, computing the percentage of the satisfied requirements,

thus yielding a quality metric that quantifies the potential adequacy of the

viii Preface

test suite at revealing program defects. What differentiates one coverage cri-

terion from another is the set of test requirements involved. For example,

function coverage is concerned with whether every function in the program

has been called, and statement coverage is concerned with whether every

statement in the program has been executed. The use of code coverage

in testing is not restricted to assessing the quality of test suites. For example,

researchers have devised test suite minimization and test case generation

techniques that also leverage coverage. Early coverage-based software test-

ing techniques involved basic test requirements such as functions, state-

ments, branches, and predicates, whereas recent techniques involved test

requirements that are complex code constructs such as paths, program

dependences, and information flows; or test requirements that are not nec-

essarily code constructs such as program properties, and user-defined test

requirements. The focus of this chapter is to compare these two generations

of techniques with regard to their effectiveness at revealing defects. The

chapter first presents preliminary background and definitions and then

describes impactful early coverage techniques followed by select

recent work.

I hope that you find these articles of interest. If you have any suggestions

of topics for future chapters, or if you wish to be considered as an author for a

chapter, I can be reached at atif@cs.umd.edu.

Prof. ATIF M. MEMON, Ph.D.

College Park, MD, United States

ixPreface

mailto:atif@cs.umd.edu
mailto:atif@cs.umd.edu

This page intentionally left blank

CHAPTER ONE

How Elasticity Property Plays
an Important Role in the Cloud:
A Survey
M.A.N. Bikas, A. Alourani, M. Grechanik
University of Illinois at Chicago, Chicago, IL, United States

Contents

1. Introduction 2
2. Cloud Elasticity 3

2.1 Elasticity Definitions 4
2.2 Importance of Elasticity in the Cloud 5
2.3 How to Measure Elasticity 6

3. Existing Cloud Elasticity Solutions 7
3.1 Classification of Cloud Elasticity Solutions 7
3.2 How Current Cloud Service Providers Are Offering Elasticity 10

4. Existing Research Issues of Cloud Elasticity 12
4.1 Resource Availability 12
4.2 Interoperability Between Clouds 12
4.3 Resources Granularity Problem 13
4.4 Start-Up Time Problem 13
4.5 Elasticity Requirement 14
4.6 Automated Elasticity Mechanism 15
4.7 Oscillation Problem 15
4.8 Auto-Scaling Metrics and Benchmarking Tools 16

5. How Elasticity Can Be Improved in the Cloud 17
5.1 How to Maximize Resource Availability in the Cloud? 17
5.2 How to Minimize the Resource Provisioning Time in the Cloud 18
5.3 How to Minimize the Resource Provisioning Cost in the Cloud? 19
5.4 How to Predict Future Resource Demand in Cloud? 21

6. Conclusion 23
References 23
About the Authors 29

Abstract

In a cloud environment, consumers can deploy and run their software applications on a
sophisticated infrastructure that is owned and managed by a cloud provider
(eg, Amazon Web Services, Microsoft Azure, and Google Cloud Platform). Cloud users

Advances in Computers, Volume 103 # 2016 Elsevier Inc.
ISSN 0065-2458 All rights reserved.
http://dx.doi.org/10.1016/bs.adcom.2016.04.001

1

http://dx.doi.org/10.1016/bs.adcom.2016.04.001

can acquire resources for their applications on demand, and they have to pay only for
the consumed resources. In order to take this advantage of cloud computing, it is vital
for a consumer to determine if the cloud infrastructure can rapidly change the type and
quantity of resources allocated to an application in the cloud according to the applica-
tion's demand. This property of the cloud is known as elasticity. Ideally, a cloud platform
should be perfectly elastic; ie, the resources allocated to an application exactly match
the demand. This allocation should occur as the load to the application increases, with
no degradation of application's response time, and a consumer should pay only for the
resources used by the application. However, in reality, clouds are not perfectly elastic.
One reason for that is it is difficult to predict the elasticity requirements of a given appli-
cation and its workload in advance, and optimally match resources with the applica-
tions’ needs. In this chapter, we investigate the elasticity problem in the cloud. We
explain why it is still a challenging problem to solve and consider what services current
cloud service providers are offering to maintain the elasticity in the cloud. Finally, we
discuss the existing research that can be used to improve elasticity in the cloud.

1. INTRODUCTION

In recent years, cloud computing is receiving a great deal of attention

in the industry and academic worlds. The primary motivation for companies

to consider cloud platforms for their applications is the possibility of acquir-

ing resources on demand and paying only for the resources used by the appli-

cation. To understand the benefits of cloud computing, consider a scenario

where a start-up company wants to launch a new service on the web. One of

the approaches that the company can go with is the traditional infrastructure,

which the company must purchase or build, and manage. With the tradi-

tional infrastructure approach, the company’s engineers have to estimate

the amount of hardware and the number of customers, and based on these

estimations, the company will start providing the service with a required

level of quality. Then, the employees of the company will buy or rent

the hardware, install the necessary applications, and start providing the ser-

vice. But the number of customers is often difficult to predict, and it changes

significantly over time (eg, the company released a new feature that has

become popular in just an hour and can multiply the number of users in

a short time period). To handle this situation, the employees can acquire

more hardware by paying additional costs; otherwise their estimated hard-

ware will not be sufficient to provide the expected quality of the service and

eventually will discourage potential customers. The problem with this

approach is that the company will either end up paying a lot more than nec-

essary or will lose customers.

2 M.A.N. Bikas et al.

Cloud computing platforms offer a solution to the above problem. In

cloud computing, the company can deploy their software services at the

cloud platform that is managed and owned by a cloud provider.With a cloud

provider, the company can get resources for their services on demand and

only pays for the resources that are actually used. The cloud provider typ-

ically runs large data centers with thousands of servers and hence can pay

lower prices for the hardware and lower maintenance costs. According to

Armbrust et al. [1], for a medium-sized data center, saving on costs can

be of factor 5–7. Another advantage of cloud computing is the elasticity

it can provide to software applications; ie, new resources can be allocated

and assigned to a customer quickly. In the cloud, new resources will be allo-

cated when the number of users increases and later resources will be released

when they are not required anymore. This way, the company can save

money by not paying for unnecessary infrastructure and can prevent

degrading the quality of the service.

This chapter is organized as follows: Section 2 presents a cloud elasticity

overview, the importance of the elasticity problem in the cloud, and howwe

can measure elasticity in the cloud. Section 3 presents the elasticity solutions

and details what services existing cloud service providers are currently offer-

ing. Existing research issues of cloud elasticity are discussed in Section 4.

Section 5 analyzes the existing works that can be utilized to improve the elas-

ticity in the cloud and, finally, we conclude in Section 6.

2. CLOUD ELASTICITY

In cloud computing, resources can be dynamically provisioned on

demand, and a customer has to pay only for the consumed resources.

According to Mell et al. [2], these resources can be obtained quickly and

in certain cases automatically to meet the workload change. For cloud con-

sumers, the resources available for provisioning often appear to be infinite

and can be acquired in any quantity at any time, at least in theory. Elasticity

is often used interchangeably with scalability [3], but there are some differ-

ences. Scalability [3] is the ability of a system to sustain an increasing

workload by adding more computing resources to maintain adequate per-

formance, while elasticity is related to how well the system is dynamically

provisioning resources according to the workload at any point in time. Elas-

ticity considers both the growth and the reduction of the pool of cloud

resources based on the demand, while scalability only considers the growth.

As mentioned by Islam et al. [3], scalability does not consider how long it will

take for the system to accomplish the required level of performance, whereas

3Elasticity Property Plays an Important Role

time is the central aspect of elasticity that depends on how quickly the system

responds to a changed workload. This interplay between elasticity and scal-

ability is important for evaluating the combined performance of applications

that are deployed in the cloud.

In the subsequent sections, we cite some of the most commonly used

definitions of cloud elasticity. Then, we will discuss the importance of elas-

ticity property in the cloud and how elasticity can be measured in the cloud.

2.1 Elasticity Definitions
There are many works that try to define cloud computing elasticity. Despite

that, there is no precise and common understanding of the term elasticity in

the context of cloud computing. Nothing has been proposed so far to quan-

tify and compare elasticity properties of different cloud service providers [4].

Here, we list some of the commonly used definitions of cloud elasticity to

get the perspective about different usages of this term.

NIST defines cloud elasticity as [2]: “Rapid elasticity: Capabilities can be

elastically provisioned and released, in some cases automatically, to scale

rapidly outward and inward commensurate with demand. To the con-

sumer, the capabilities available for provisioning often appear to be

unlimited and can be appropriated in any quantity at any time.”

Herbst et al. [4]: “Elasticity is the degree to which a system is able to adapt

to workload changes by (de)allocating resources in an autonomic man-

ner, such that at each point in time the available resources match the cur-

rent demand as closely as possible.”

Han et al. [5]: “Ability of the system to adaptively scale resources up and

down in order to meet varying application demand.”

Li et al. [6]: “How quickly a system can adapt to changes in the workload

that may happen in a short amount of time.”

Garg et al. [7]: “How much a cloud service can be scaled up and down

during the peak times.”

Perez-Sorrosal et al. [8]: “Capacity at runtime by adding and removing

virtual resources without service interruption in order to handle varia-

tion in the workload.”

Edwin Schouten, IBM, Thoughts on Cloud [9]: “Elasticity is essentially a

rename of scalability. Scalability is the ability to add or remove capacity,

mostly processing, memory, or both, to or from an IT environment

when this is needed.”

4 M.A.N. Bikas et al.

We define elasticity as the ability of a system to dynamically adjust virtual

resources assigned to an application based on workload, and the allocated

resources have to precisely match the demand as fast as the load to the

application increases or decreases while maintaining the service-level

agreements, and a consumer pays only for the resources used by the

application.

2.2 Importance of Elasticity in the Cloud
Ideally, a cloud platform should be perfectly elastic; ie, the resources allo-

cated to an application exactly match the demand, and this should happen as

fast as the load increases with no degradation of the application’s response

time, and a consumer only pays for the resources used by the application.

To host an application with a strict response time requirement and

unpredictable workload, an elastic cloud would be an ideal platform [10].

On a traditional infrastructure, these types of applications are difficult to

host because the quantity of resources that is needed to provide a guaranteed

quality of service (QoS) is not known in advance. However, clouds are not

perfectly elastic in reality because it is difficult to predict the elasticity

requirements of a given application and its workload in advance and opti-

mally match resources with the applications’ needs. Moreover, there is a

delay between the requested time of the resources and the availability of

the resources to be used by the application [10]. The cloud infrastructure

is not able to immediately respond to the application’s demand because

it should first look for an available server to create a new virtual machine

instance and deploy the application, start the application, and include the

newly added instance in a load balancer (eg, the Amazon Elastic Load Bal-

ancer) so that it can be accessed externally. The time required for all these

steps is often referred to as the start-up time [10]. In practice, this start-up

time depends on the particular cloud provider. The objective of cloud

elasticity is to maximize the performance of applications hosted in the

cloud by minimizing cost while maintaining the SLA requirements

(eg, 90% of requests with less than 500 ms response time, 99.9% availability,

etc.). To get the full advantage from a cloud system, we need proper

elasticity solutions to achieve the elasticity objectives. Even though many

elastic solutions have already been developed to minimize the elasticity

problem in the cloud, still more work is required to manage cloud elasticity

better.

5Elasticity Property Plays an Important Role

2.3 How to Measure Elasticity
Different metrics are used to evaluate the elasticity in the cloud. Islam et al.

[3] defined elasticity metrics based on the financial penalties imposed by

cloud providers on cloud users by overprovisioning (ie, cloud users pay

more than necessary for the resources to handle a workload) and under-

provisioning (ie, cloud users face unacceptable latency due to unmet

demand) of cloud resources. As proposed by the authors, to determine a sin-

gle elasticity metric, cloud users should run different benchmark workloads

on the cloud under investigation and take the geometric mean of the com-

bined costs of overprovisioning and underprovisioning.

Garg et al. [7] proposed a metric for elasticity how a cloud service can be

scaled up and down during peak intervals. They defined two attributes

including mean time to expand and maximum capacity of the service that

can be provided during peak periods. Bai et al. [11] proposed an elasticity

metric based on the ratio of execution time over resource allocation like

CPU and memory usage. Coutinho et al. [12] identified a list of elasticity

metrics in their survey separated by different groups. The groups they used

are resource allocation, capacity (resources and services availability), cost

(financial cost or operational cost), QoS (service-level agreements), resource

utilization (ie, resource demand, idleness, overutilization, and underutiliza-

tion), scalability of the system, and time. Defining standard metrics for the

measurement of cloud elasticity is not an easy task. Common metrics that

can be used to measure elasticity are resource utilization, response time,

throughput, scalability, availability, and reliability [12]. Among these met-

rics, resource utilization (eg, percentage of CPU allocation) is used by most

of the current public cloud providers (eg, Amazon EC2, Azure). The per-

formance of the application, for example, its throughput (expressed in the

number of requests per second), is another frequently used elasticity metrics

after resource utilization. The cost and pricing also play a very significant role

in cloud elasticity. They are often associated with public cloud providers due

to the nature of their resource acquisition, and each provider has a strategy to

allocate resources [12]. Scalability is also identified by many as a strategy to

provide elasticity. The performance of cloud elasticity depends on how long

it takes to allocate and deallocate resources to an application based on

demand. During the resource allocation time, the application’s service will

be interrupted, which is completely undesirable.We are still a long way from

providing a desirable elasticity in the cloud. It is required to have some stan-

dard metrics that would be used by all cloud service provider to help their

consumers to measure and compare cloud elasticity.

6 M.A.N. Bikas et al.

3. EXISTING CLOUD ELASTICITY SOLUTIONS

One of the biggest promises of cloud computing platforms is to

support elasticity, which means on-demand allocation of resources to the

applications based on workload. Resource allocation needs to be done in

a cost-efficient manner while maintaining the quality of the services to

the applications. Software engineers define how to deprovision resources

for applications that are deployed in the cloud. Engineers study application

behavior during software testing to maintain a particular performance. Based

on that, they manually create efficient provisioning strategies (eg, if CPU

usage is greater than 80%, then add one VM), which guide the cloud to scale

the application’s resources up or down. This engineering effort should

also be minimized from the elasticity process. Currently, there are different

solutions available that are being used by the cloud service providers to

achieve elasticity. In the subsequent sections, we will analyze these solutions

and discuss how these solutions work in the cloud to maintain the elasticity.

Then, we will describe how some of the popular cloud service providers are

offering their elasticity solution.

3.1 Classification of Cloud Elasticity Solutions
There are different elasticity solutions that exist in the cloud. These solutions

can be classified in several categories based on different characteristics. As

discussed in Refs. [12–14], elasticity solutions can be classified into reactive

and predictive, based on the solution type. Based on the implementation

techniques, it is possible to classify each type of elasticity solutions as

Horizontal Scaling, Vertical Scaling, and Migration [13].

3.1.1 Reactive Elasticity Solution
Reactive elasticity solution reacts to the current load of the application to

trigger some auto-scaling actions based on the given thresholds conditions

(eg, resource utilization or violations of SLA). The reactive solution works

based on the Rule-Condition-Action technique [13]. In a reactive solution,

application owners manually provide auto-scaling rules that specify the

threshold conditions for both provisioning and deprovisioning. An auto-

scaling rule is composed of a set of threshold conditions and what scaling

actions to be taken by the underlying cloud platform when any of the con-

ditions is triggered. Every condition consists of one or more auto-scaling

metrics, eg, CPU utilization or RAM usage, which are compared against

7Elasticity Property Plays an Important Role

a threshold or violations of SLA.Most of the cloud service providers provide

these auto-scaling metrics through a monitoring service, for example, Ama-

zon CloudWatch [15] monitoring service includes CPU usage, network

traffic, disk reads, and writes. One of the auto-scaling rules for provisioning

resources can be as follows: Condition (if CPU usage is greater than 85% for

five consecutive minutes) and then Action (add one VM). The elasticity

controller of underlying cloud platform continuously monitors these rules,

and when one of these conditions is met, it triggers the appropriate scaling

action [16].

The reactive solution is the most commonly used cloud elasticity solu-

tion and offered by popular cloud service providers such as Amazon [17],

Microsoft Azure [18], and Google Cloud Platform (GCP) [19]. Several

academic works [20–23] suggested some improvement over the rule-based

reactive elasticity solution. For instance, Breitgand et al. [20] proposed an

adaptive threshold-based algorithm using linear regression model, where

the model recomputes new threshold values each time any of the

predefined performance parameters is violated. However, threshold-based

solutions adjust new threshold values only relying on the current system

behavior and also require some historical data that might not be available

every time.

3.1.2 Predictive Elasticity Solution
Unlike reactive solution, a predictive solution attempts to predict the future

demand for an application to allocate sufficient resources in advance of the

load. Predictive solutions use various analytical techniques (ie, time series

analysis, queuing theory, control theory, or reinforcement learning) and dif-

ferent heuristics to determine when and how to (de)provision resources.

One predictive policy can be to use a workload predictor to anticipate

the future system load behavior from the history of the previous workloads,

and then use a performance model to decide the quantity of resources

(eg, number of VMs) required to service the anticipated load [24].

Various predictive solutions have been proposed to automatically

scale resources. For example, Nguyen et al. [25] proposed an elastic

resource scaling system using a wavelet-based [26] approach to predict

the future resource needs of a cloud application for various workloads.

A comprehensive analysis of predictive elasticity solution is presented in

Section 5.4.

Hybrid elasticity solutions, combining both reactive and predictive solu-

tions, have also been proposed by researchers (eg, Refs. [27–29]) to handle

8 M.A.N. Bikas et al.

the inaccuracy in workload prediction. For example, Ali-Eldin et al. [28]

proposed a hybrid solution based on queuing theory, where the authors used

a reactive approach for scaling out and proactive for scaling in.

3.1.3 Horizontal Scaling
Horizontal scaling means adding or removing new instances (eg, VMs) to

adapt to the changes in request load [16]. For example, add a new VMwhen

the load increases and remove a VM when the load decreases. This tech-

nique is also called replication as a new replica of the same instance is being

created to handle the increased user load. To distribute the load between dif-

ferent replicas, cloud platforms offer a load-balancing feature (eg, Amazon

Elastic Load Balancer). Most of the current cloud service providers, for

example, Amazon Web Services [17], use the horizontal scaling technique

to provide elasticity.

3.1.4 Vertical Scaling
Vertical scaling means adding or removing resources (eg, CPU, memory) to

an already running instance (eg, VM) on the fly, without restarting the

instance [16]. For example, addingmore CPU ormemory to an already run-

ning virtual machine. This can also be referred to as the hot-add feature in the

cloud. Most common operating systems do not support making any changes

to their resources (eg, CPU, memory) on the fly without a reboot [16]. For

this reason, current cloud providers do not offer this vertical scaling elastic-

ity. Public cloud providers are trying to mimic this on-the-fly vertical scaling

technique, by replacing a more powerful VM for a less powerful one. For

example, AWS allows its users to change the instance type based on the load;

however, a reboot of the instance is necessary, and this could take several

minutes.

3.1.5 Migration
Migration means transferring a running instance (eg, VM) from a physical

server to another physical server to handle the increase/decrease in applica-

tion workload. Themigration technique can be used as an alternative to ver-

tical scaling, where an application is migrated to a larger capacity VM to keep

up the growth inworkload [13].However, during themigration process, appli-

cation service might be interrupted, and hence, performance of the application

is likely to be affected. Many cloud providers (eg, Amazon Web Services)

9Elasticity Property Plays an Important Role

presently do not support live migration. However, VMware vSphere [30]

supports live migration of an entire running VM from one server to another

server without having to shut it down.

3.2 How Current Cloud Service Providers Are Offering Elasticity
This section presents an overview of how current cloud service providers are

offering elasticity solutions.

AmazonWeb Services [17] is one of the leading cloud service providers.

AWS provides its elasticity solution using a replication technique called

Auto-scaling [31] as part of their EC2 service offering. Auto-scaling solution

works based on a concept of auto-scaling groups, where a customer has to

specify a minimum and a maximum number of EC2 instances in each auto-

scaling group to handle the load for their application. Auto-scaling uses a

reactive approach where the customer also has to specify a set of auto-scaling

rules (eg, if CPU usage exceeds 80%, then add a VM) that determines the

number of VMs to be added or removed when the demand on the applica-

tion increases or decreases. Amazon CloudWatch [15] monitoring service

provides the metric values to help the customers to determine auto-scaling

rules, which includes CPUusage, network traffic, disk read, andwrites. APIs

and a command-line interface can also be used for manually accessing

the scaling features. Additionally, the solution includes an external elastic

load balancer for distributing the workload to active EC2 instances. The

auto-scaling architecture is illustrated in Fig. 1. As it can be seen, to use

Predefined
scaling
activity

Scale-up rule

Scale-down rule

EC2 instance

EC2 instance

EC2 instance

EC2 instance

EC2 instance

.

.

.

Auto-scaling group
Amazon CloudWatch

Scale up

Scale down

Scale down

Scale up

Elastic load balancer

Web App

Fig. 1 How AWS offers elasticity. Adapted from H. Ganesan, Auto-scaling Using AWS.
http://www.slideshare.net/harishganesan/auto-scaling-using-amazon-web-services-aws,
November 2015.

10 M.A.N. Bikas et al.

http://www.slideshare.net/harishganesan/auto-scaling-using-amazon-web-services-aws

the auto-scaling solution efficiently, customers have to come up with at least

two rules to determine when to scale out and scale in. Amazon uses only the

horizontal scaling technique to provide elasticity. Amazon presently does

not support vertical scaling or migration. However, it allows the users to

change the EC2 instance type, depending on the load, but for that a reboot

is necessary, and this process can take up to several minutes.

Microsoft Azure [18] offers both Platform as a Service (PaaS) and Infra-

structure as a Service (IaaS).With Azure IaaS, users can host their application

either in a VM, where they are responsible for managing everything, or by

installing the OS to make up the application running on it. And with Azure

PaaS, users can host their application using Azure Cloud Service, where

users can create either a web role (a web role is a front-end instance config-

ured to run web applications supported by IIS, such as ASP.NET, and PHP)

or a worker role (a worker role is a backbend instance configured to run

applications and services-level tasks that do not require IIS) [32]. Like

Amazon, Azure also uses a reactive approach, where the users have to specify

a set of auto-scaling metrics. Azure presently uses only horizontal scaling

techniques. To automatically scale an application running either on VMs,

web roles or worker roles, users have to set some metrics in the Azure

Management Portal. The auto-scaling metrics currently provided by the

Azure through portal are Average CPU usage and Queue message [33].

One of the auto-scaling rules in Azure can be, if CPU usage >75%, to

add a newweb role instance. The AzureWatch, [34] which is being replaced

with Cloudmonix [35], developed by Paraleap, provides an elasticity service

to monitor and auto-scale any Azure-based solutions. AzureWatch offers an

elasticity service by inspecting the performance of Azure-based applications,

and based on that, they automatically allocate resources for the applications

according to real-time workload.

GCP [19] also implements reactive horizontal elasticity like AWS and

Azure. Google Cloud provides elasticity through a managed instance group,

where a user can create andmanage virtual machine instances. Google allows

a maximum of 500 instances in a single managed instance group [36]. Then,

the user has to create an autoscaler with an auto-scaling policy, where the

autoscaler uses the defined policy to scale in or scale out. The currently

supported auto-scaling policies by GCP are average CPU utilization, cloud

monitoring metrics, and request per second. For example, if we define an

auto-scaling policy as “0.85 average CPU utilization,” then the autoscaler

will try to maintain 85% CPU usage among all the cores in the instance

group virtual machines. The autoscaler will automatically add more

11Elasticity Property Plays an Important Role

instances (user-specified) to the instance group if the average usage of the

total cores goes beyond the target utilization and will remove instances oth-

erwise. Google also offers APIs that can be used to set custom auto-scaling

policies and to manage resources in the managed instance group. Google

Compute Engine also provides a load-balancing service to distribute incom-

ing network traffic across multiple virtual machine instances in the managed

instance group.

Similarly, VMware [37], IBM [38], and Rackspace [39] as well as many

other cloud providers also offer the rule-based reactive elasticity services

through a managed control panel and APIs. RightScale [40] and Scalr [41]

are two popular cloud management platforms that sit on top of various cloud

providers (ie, AWS [17], GoGrid [42], etc.) and provide services to monitor

and manage the elasticity of the underlying clouds.

4. EXISTING RESEARCH ISSUES OF CLOUD ELASTICITY

Cloud providers and academic researchers developed numerous elas-

ticity solutions. However, there are still some existing cloud elasticity issues

need to be adequately addressed. In this section, we describe the major chal-

lenges related to cloud elasticity.

4.1 Resource Availability
Cloud computing provides the illusion of unlimited resources available on

demand. However, public cloud providers violate the promise of unlimited

resources by determining a fixed number of computing resources that can be

acquired by each user at any time [13]. For example, Amazon EC2 enables

users to allocate 20 simultaneous instances on demand and 100 instances per

region at the same time [13]. Rackspace provides a maximum limit of 65 GB

of total memory for all users or 130 servers with 512 MB of memory per

region [14]. For the majority of application owners, the quota allowed by

the cloud providers is sufficient for their applications. However, if highly

scalable resource-intensive applications (eg, pattern matching) start to use

cloud computing effectively, these applications may shortly reach the scaling

limits assumed for resource availability [13].

4.2 Interoperability Between Clouds
The use of different clouds to meet the needed of resources is one of the

solutions to the resource availability issue. However, using various public

12 M.A.N. Bikas et al.

clouds together remains challenging because of the lack of interoperability

and portability between the clouds that caused by the limitation of standard-

ized APIs [13]. Also, each cloud provider has its way of how cloud users and

applications interact with the cloud [43]. For this reason, the migration of

virtual machines among clouds and the communication between applica-

tions in different clouds is a very difficult task. To produce a huge-scale elas-

tic computing models by combining different clouds, an evaluation toward a

standardized API is a must. Some initiatives are going on to create global

cloud standards. For example, the Cloud Computing Interoperability

Forum (CCIF) [44] is working to create an open and standardized cloud

framework that allows multiple cloud platforms to exchange information

in a unified way. IEEE also has a similar project called Guide for Cloud

Portability and Interoperability [45].

4.3 Resources Granularity Problem
Currently, most cloud service providers offer virtual machines as scaling

units (eg, instance types in the Amazon EC2). However, resources should

be available to users at any granularity that allows users to allocate different

amounts of I/O resources and memory dynamically in a fine-grained fash-

ion [14]. Also, acquiring a fixed combination of cloud resources cannot

match the applications’ demands and does not reflect the interests of

users [46]. Another problem is that most of the cloud providers do not sup-

port vertical elasticity, which means it is not possible to add resources

(eg, CPU, memory) to a running virtual machine (or instance) [12]. Many

cloud service providers started offering vertical scaling of resources. For

example, GoGrid [42] allows its user to increase memory vertically, and

Amazon allows changing the instance type. However, VM rebooting is

required, which yields several additional minutes.

4.4 Start-Up Time Problem
One of the important advantages of the elasticity is the capability to dynam-

ically deprovision resources according to demand. On the other hand, one

potential problem with this dynamic provisioning process is that it takes

time. In addition to unpredictable changes in workload, it lacks the ability

to provision resources in advance. Start-up time represents the length of

time between requesting and acquiring resources that are available for use

by cloud consumers [10]. The start-up time may take up to 10 min, which

is affected by multiple factors, including the type of cloud platform, data

13Elasticity Property Plays an Important Role

center location, VM type, available resources in a region, image size, and the

number of VMs [10]. Thus, if a cloud platform does not allocate required

resources in a timely fashion, it could result in the underprovisioning of

resources, which will adversely affect applications performance. Mao

et al. [47] did a performance study on VM start-up time by comparing three

different cloud providers—Amazon EC2, Windows Azure, and Rackspace.

Their study shows that EC2 instance start-up time can be as high as 13 min,

which is shown in Table 1.

On the opposite side, if a cloud platform does not release resources when

an application no longer needs them, the application’s owner could be over-

charged for resource use. Amazon bills its customers on a per hour basis,

which means that a customer has to pay for a full hour from the time the

instance is allocated even though the instance might be deallocated imme-

diately after being allocated [14]. Microsoft Azure bills its customers for a

complete hour per each clock hour that an instance is deployed. For

instance, if an Azure instance is allocated at 9:58 am and deallocated at

11:02 am, the customer is charged for 2 h [14].

4.5 Elasticity Requirement
Each application hosted in the cloud behaves differently. Different applica-

tions may require different resources to satisfy the same customer demands.

It may be difficult, if not impossible, to match required resources with appli-

cations’ needs optimally. Based on the halting problem [48], we can con-

clude that it is impossible to determine whether the program will finish

Table 1 Average VM Start-Up Time

Cloud Operating System
Average VM Start-Up
Time in Seconds

Azure WebRole 374.8

Azure WorkerRole 406.2

Azure VMRole 356.6

Rackspace Linux 44.2

Rackspace Windows 429.2

EC2 Linux 96.9

EC2 Windows 810.2

Picture is taken fromM.Mao,M. Humphrey, A performance study on the VM startup time in the cloud, in:
IEEE 5th International Conference on Cloud Computing (CLOUD), June, IEEE, 2012, pp. 423–430.

14 M.A.N. Bikas et al.

running or continue running forever with a high degree of precision. To

ensure proper elasticity, customer needs have to be considered while

deploying applications in the cloud. One possible solution to meet elasticity

requirements is to make an optimal trade-off between performance and cost.

However, it is a difficult task due to the complexity of application behavior

and the multiple dimensions of elasticity [49].

4.6 Automated Elasticity Mechanism
Elasticity solutions implemented by public cloud service providers are not

fully automated. Application owners have to manually provide rules that

specify the threshold conditions for both provisioning and deprovisioning.

Every condition is composed of a series of auto-scaling metrics. These met-

rics include CPU usage, memory usage, I/O usage, the number of active

connections, throughput, and latency. One of the conditions for provision-

ing resources can be that if CPU usage is greater than 80% for five consec-

utive minutes, then add one VM. The elasticity controller continuously

monitors these conditions, and when one of these conditions is met, it trig-

gers the appropriate scaling operation. Providing suitable threshold provi-

sioning conditions for any specific application is a very tricky task, and in

many cases, it could cause instability in the system. Additionally, fixed

thresholds would be invalid as long as the application behavior is

dynamic [12]. These conditions are appropriate for an application when

the load can be anticipated or predicted to some extent. However, in a

real-world scenario, it is very difficult, if not impossible, to predict the

future load of a certain application. Therefore, it is important to tackle

the different conditions of applications derived from the unanticipated

workload by developing an automated and efficient auto-scaling approach.

The automated elasticity problem can be addressed by using different

approaches such as time series analysis, queuing theory, control theory,

threshold-based policies, or reinforcement learning [12].

4.7 Oscillation Problem
In the cloud, when allocating resources for a software application, devel-

opers are liable to overprovision it (ie, allocating more resources than

required, which results in the consumer’s paying more than necessary),

and an SLA violation occurs at the same time, and this is called the oscillation

problem. For example, consider a scenario where the resource demands of

an application are two CPUs and 2 GB of memory, and the cloud platform

15Elasticity Property Plays an Important Role

allocated five CPUs and 1 GB of memory to it. Thus, the consumer has to

pay for three extra CPUs, but the application has unacceptable latency or

timed out because of the unmet memory requirements, which caused the

SLA violation. Oscillation problem is also illustrated in Fig. 2. Islam et al.

[3] first observed this situation during their experiment with Amazon

EC2. Later, Lorido-Botran et al. [50] mentioned about this problem in their

review article. An oscillation problem can be caused by providing the

improper type or quantity of resources to the application in the cloud.

Another reason could be delays in providing the right resources and

deprovisioning the unnecessary resources according to the application’s

workload. Oscillation problem does not only degrade applications’ QoS

but are also costly, making consumers pay for unnecessary resources.

4.8 Auto-Scaling Metrics and Benchmarking Tools
Different cloud providers use different auto-scaling metrics (eg, CPU utili-

zation) in an isolated manner. For example, currently, Amazon EC2 [31]

provides CPU utilization, memory utilization, the number of requests/

second, and response time as scaling metrics, along with some other metrics.

Azure [18] provides average CPU usage and queue messages as scaling met-

rics. It is very difficult for customers to understand which metrics they

should use to properly provision their application hosted in the cloud.

R
es

ou
rc

es

Overprovisioning

Resource allocation

Load demand

System response time

R
es

po
ns

e
tim

e

SLA violation

MAX SLA

T1 T2Time

T1 T2
Time

Fig. 2 Oscillation problem.

16 M.A.N. Bikas et al.

It is important to define metrics in such a way as to capture different aspects

of elasticity. Besides, new benchmark tools are necessary to assess the

elasticity of cloud environments properly.

5. HOW ELASTICITY CAN BE IMPROVED IN THE CLOUD

In this section, we discuss the existing works contributed toward the

elasticity that can be used to improve the elasticity property in the cloud.

5.1 How to Maximize Resource Availability in the Cloud?
One of the main issues of cloud computing is the availability of resources in

the cloud. Several factors should be addressed to ensure the high availability

of the application on the cloud, including hardware and software failures,

specifically single points of failures, network vulnerabilities, power outages,

conservations, or denial of service invasions. An efficient deprovisioning of

resource reduces the low availability of the services (eg, application) on the

cloud.We summarize some of the solutions that address resource availability

problem.

Armbrust et al. [1] discussed how availability is one of the top obstacles in

cloud computing. Although the authors have analyzed the high-availability

approaches used by cloud providers, they do not discuss any existing solu-

tions that enable a cross-cloud resource provisioning model. Cloud pro-

viders (eg, GCP, Amazon Web Services, Microsoft Azure, GoGrid, and

Rackspace) lack a common platform for cross-cloud provisioning.

Galante et al. [13] pointed out that the use of multiple clouds is one of the

solutions to the resources availability issue. The CCIF [44] attempted to

overcome the limitations of interoperability standards among various cloud

platforms by introducing an open and standardized cloud interface to unify

different cloud platform APIs. IEEE also has a similar project P2301 (Guide

for Cloud Portability and Interoperability) [45], where the purpose of the

project is to guide cloud users to develop and use cloud services using a com-

mon standard to increase portability and interoperability among different

providers.

Buyya et al. [51] proposed architecture for cloud federation to integrate

distributed clouds to meet business requirements. A federated cloud enables

cloud providers to manage and deploy several external and internal cloud

computing services. For example, it allows fulfilling the exceeding demands

of a cloud by renting resources from other cloud service providers.

17Elasticity Property Plays an Important Role

Pawluk et al. [52] developed an initial step toward the idea of a cloud of

clouds [53] to enable an automated cross-cloud resource provisioning plat-

form. They proposed a broker service that enables cross-cloud to facilitate

the construction of application topology platform and runtime modification

according to the objectives of an application deployer. In most cases, the

assumption of acquired resources should be homogeneous. However, the

authors eliminated this assumption to support an actual intercloud platform.

An open project [54] for cross-cloud acquirement and VM management

enables a developer to select which of the available clouds to use, whereas

Pawluk et al. [52] select the available clouds to use for the developer.

An attempt to define unified access tomultiple clouds via a unified API has

been advanced byRefs. [44,45,54], whereas Refs. [51,52] introduced a meth-

odology for the federation of cloud computing platforms. Both works do not

discuss any implementation to automate the resource acquirement procedure

via unified access to multiple clouds. References [44,45] presented limited

support for interoperability and intercloud interfaces, but they did not provide

any mechanism (eg, implementation) to automate the resource acquirement

procedure via unified access to multiple clouds through APIs.

These studies have proposed solutions to the problems associated with

resource availability of cloud systems. These solutions are very valuable to

ensure the high availability of the services on the cloud systems to maintain

elasticity.

5.2 How to Minimize the Resource Provisioning Time in the
Cloud

One of the main concerns of cloud computing is resource provisioning

time, the length of time between scaling up/down and actual resource

provisioning/deprovisioning time. Although cloud users can acquire

resources (eg, VM) at any time, it takes a while for the acquired VMs to

be available for use. The duration of time, which is called the start-up time,

is caused by the search for a spot for provisioning the VM in the data centers,

including allocating IP address, configuring the OS, and booting the OS.

Moreover, this start-up time is affected by multiple factors, including data

center location, VM type, image size, and the number of VMs. Cloud

providers support various resource provisioning times [10]. Cloud users

are aware of the start-up time problem and complained about the need to

improve the performance of their cloud applications [55,56]. The provision-

ing time should be taken into consideration while designing the control

mechanism for elastic applications. For example, the elasticity time was

18 M.A.N. Bikas et al.

taken by provisioning a new VM for a specific application component. We

discuss some of the solutions that address resource provisioning time.

Multiple researchers measured the efficiency of start-up time using the

overall performance of a cloud provider. For instance, Ostermann

et al. [57] evaluated the different VM start-up times for one-instance and

several-instance requests in EC2. Hill et al. [58] compared the VM start-

up process between WebRole and WorkerRole in Microsoft Azure. Both

works do not consider the new services (eg, VMRole of Azure [32] or spot

instances of Amazon [59]) and other elements, such as the size of OS image,

type of instance, location of a data center, and time of the day.

The need to speed up the start-up time has been advanced by Refs.

[60–63]. Nguyen et al. [25] showed how dynamic VM cloning technique

can be used to reduce the application start-up time so that new VMs will

be ready before overloads occur. Wu et al. [60] also developed techniques

based on VM cloning to accelerate the speed of cloud deployment. Zhu

et al. [61] designed a fast start approach by taking a snapshot of the deployed

VM that hosts the configured application. Tang et al. [62] developed a VM

image called FVD to enable the migration and creation of instant VM.

Peng et al. [63] introduced a chuck-level VM image technique for the distri-

bution network tominimize the VM instance provisioning time by supporting

collaboration sharing in cloud data centers. Villegas et al. [64] discussed chang-

ing providers billing policy and virtualization techniques to overcome the

spin-up/down times. OSv [65] is a cloud-based operating system, which is

designed for running only a single application on a VM. Even though it

can boot within just a few second, it takes longer time to deprovision a VM.

In addition, other works [66–69] used spot instances to accelerate the

speed of their job execution and reduce their job execution cost. In these

works, the cost of spot instances was assumed to be cheaper than that of

on-demand instances. Cloud customers receive higher computing power

for spot instances than for on-demand instances. On the other hand, these

techniques do not observe the longer VM start-up time.

We review the recent studies related to the resource provisioning time in

order to understand how to improve the performance of software applica-

tions that are hosted in the cloud environment.

5.3 How to Minimize the Resource Provisioning Cost in the
Cloud?

Cloud computing has grown to support the demands of big data by devel-

oping a pay-as-you-go cost model that allows users to minimize the cost of

19Elasticity Property Plays an Important Role

rented resources and to maintain QoS (eg, throughput, reliability, availa-

bility, security, response time, and performance). The resource provisioning

cost, which represents the cost of utilizing computing resources (eg, RAM,

CPU, and VM), is one of the main concerns of cloud computing. It is dif-

ficult to apply perfectly the pay-as-you-go cost model due to the difficulty of

allocating the right quantity of resources required for the execution of an

application. To improve the elasticity in the cloud, resource provisioning

cost should be minimized. We have summarized some of the solutions that

address how resource provisioning cost can be minimized.

Amazon [59] offers an elasticity solution based on cost called Spot

Instances. Spot Price determines the hourly cost of using virtual servers

via an auction by gathering user bids and estimating available capacity.

The user request of instances is fulfilled once his or her bid exceeds the cur-

rent Spot Price. These instances are kept allocated unless the user terminates

them or the current Spot Price exceeds the user bid. The provision of spot

instances has been advanced by Refs. [66,69,70]. In Ref. [66], the

checkpointing technique was developed to minimize the cost of resource

provisioning and to maintain the availability of spot instances. Andrzejak

et al. [70] consider a probabilistic algorithm that enables cloud users to

bid prices for spot instances efficiently.

Yu et al. [71] introduced a cost-efficient database placement algorithm by

combining a migration plan to minimize the migration cost and a reactive

solution to maximize the cloud resource usage. Authors create a migration

plan based on user and system preferences (eg, resource constraints) along

with generating a detailed database placement. Their case study was evalu-

ated on top of an IBM cloud platform.

Sharma et al. [27] proposed a system that reduces cloud deployment cost

and is elastic to workload changes by taking into consideration each VM

instance cost, the opportunities of replicating or migrating the VM, and

transformation time from one configuration to another. Hence, this system

provides the minimum cost configuration in linear time.

Brebner [10] proposed a fine-grained cost model to charge for consumed

resources such as the stored byte, the transmitted byte, and the time unit

(eg, millisecond) of processing.

Hong et al. [72] presented work on a vision of an optimal margin cost at

the same time, guaranteeing statistical response time. Chaisiri et al. [73]

introducedmultiple virtual server provisioning techniques to reduce the cost

of provisioning for different term planning, using reliable optimization,

complex programming, and average sampling approximation techniques.

20 M.A.N. Bikas et al.

On the other hand, these works only consider cost optimization rather than

time-cost trade-offs. The time-cost trade-offs problem has been addressed in

Ref. [74] by proposing an optimized algorithm to deal with processing time

and monetary costs in the context of the cloud.

In addition, the provision of reserved instances has been investigated in

Refs. [75,76]. In Refs. [75,76], complex programming was used to solve

uncertainties and to improve the reserved resource numbers for long terms.

We analyze some recent contributions toward the resource provisioning

cost in the cloud. It is vital to provision virtual resources precisely and auto-

matically in the cloud for maintaining a certain performance for software

applications by providing required resources that satisfy pay-as-you-go cost

model.

5.4 How to Predict Future Resource Demand in Cloud?
One of the biggest concerns of cloud elasticity is predicting the future

resource demand of applications to deal with the changes in workload.

To do this proactively, cloud system providers or application owners need

to know exactly when to start allocating resources (eg, VMs) for an appli-

cation and, more importantly, how many resources (eg, the number of

VMs) to allocate. The unpredictable nature of workload, a lack of detailed

knowledge about the application, and multitenancy make the demand pre-

diction so difficult in the cloud [25]. Presently, cloud providers reactively

allocate resources based on the user-defined rules, for example, Amazon

EC2 Auto-scaling [31], that specify when to add or release resources to

deal with load changes. As a result of this inaccurate resource prediction,

cloud users may either pay more than necessary because of the over-

allocation of resources or lose their potential customers due to the missing

SLAs. Here, we discuss some of the recent works that addresses the

resource demand prediction problem in the cloud that can be used to

improve elasticity.

Nguyen et al. [25] proposed a wavelet-based distributed resource scaling

system called AGILE to predict the resource demand of a multitier cloud

application in advance. Based on the predicted demand, they described a

model to determine the quantity of resources using online profiling and

polynomial curve fitting for maintaining the application’s performance.

Gong et al. [77] proposed an elasticity system coined PRESS by using

signal processing techniques to predict online future resource demand in

the cloud. The authors used a statistical state-driven learning algorithm to

21Elasticity Property Plays an Important Role

perform the short-term resource prediction and used a discrete-time

Markov chain model to do the long-term prediction.

CloudScale [78] is a predictive resource scaling system, which is a suc-

cessor of Press [77] that performs online prediction of resource demand

(eg, CPU usage of VMs) without any prior knowledge about the applica-

tion. CloudScale mainly gives emphasis on minimizing the prediction error,

unlike Press, which focuses on achieving high prediction accuracy.

LaCurts et al. [79] proposed a framework to predict the future network

bandwidth for applications hosted in a cloud data center by analyzing the

tenant’s past network usage.

Some of the early works, for example, Shen et al. [80] and Chandra

et al. [81], proposed resource prediction algorithms by observing previous

application workload and corresponding response times using Auto Regres-

sion techniques to allocate resources dynamically within a single server.

Gmach et al. [82] used an FFT-based technique to perform a long-term

workload prediction. Vasić et al. [83] proposed a predictive framework,

which used online clustering based on the history of the VMs to cope with

various loads. Similarly, Refs. [84–89] used various time series prediction

algorithms to achieve resource demand prediction in the cloud.

The predictive solutions mentioned earlier mainly used a time series

analysis mechanism that tries to find the repeating pattern in the future

workload based on the previous demand history. This is one of the most

popular techniques to predict future resource demand in the cloud. How-

ever, the accuracy of these solutions heavily depends on choosing an appro-

priate time series prediction algorithm (ie, Moving Average, Auto

Regression, ARMA (Auto Regression-Moving Average), Support Vector

Machine, Support Vector Regression, Neural Networking Models, Pattern

matching, Signal Processing Techniques, etc.), length of the demand his-

tory, and the prediction interval [50].

Many predictive elasticity solutions [90–100] used control theory to

adaptively perform prediction of future demand for resources based on var-

ious performance models, such as Kalman filter, Smoothing splines, and

Fuzzy model. However, the prediction accuracy of those solutions highly

depends on the efficient design of the controllers [50].

Also, many works [5,101–112] have extensively studied queuing theory

to determine how resources (eg, VMs) are required in each tier to handle

varying application workloads. However, those solutions can create signifi-

cant overheads to the underlying cloud systems, and a certain level of prior

application knowledge is required to build an effective predictive model [78].

22 M.A.N. Bikas et al.

Lorido-Botran et al. [50] conducted an interesting survey on auto-scaling

techniques, where the authors classified many predictive elasticity solutions

based on various forecasting models, such as time series analysis, queuing

theory, control theory or reinforcement learning, and static threshold-based

rules.

So many studies about predictive solutions give a clear idea of how

important it is in the cloud to anticipate future demand for the applications

based on the load variations. These solutions are undoubtedly a step forward

toward achieving a perfect elastic environment in the cloud.

6. CONCLUSION

The objective of this survey paper is to present a comprehensive study

to show how elasticity property plays an important role in the cloud. In addi-

tion, this paper helps to better understand the concept of cloud elasticity and

motivates to develop new solutions. Initially, we described an overview of

cloud elasticity. We discussed the cloud elasticity solutions and how the

cloud providers are offering elasticity. We analyzed the current research

issues of cloud elasticity and existing works that can be utilized to improve

elasticity in the cloud. Despite the vast amount of research related to cloud

elasticity, researchers still have many arising challenges to tackle to achieve a

perfectly elastic solution in the cloud.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, et al., A view

of cloud computing, Commun. ACM 53 (4) (2010) 50–58.
[2] P. Mell, T. Grance, The NIST Definition of Cloud Computing, National Institute of

Standards and Technology, Gaithersburg, MD, 2011. http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

[3] S. Islam, K. Lee, A. Fekete, A. Liu, How a consumer can measure elasticity for cloud
platforms, in: Proceedings of the 3rd ACM/SPEC International Conference on Per-
formance Engineering, ACM, Boston, MA, April 2012, pp. 85–96.

[4] N.R. Herbst, S. Kounev, R. Reussner, Elasticity in cloud computing: what it is, and
what it is not, in: Proceedings of the 10th International Conference on Autonomic
Computing (ICAC), San Jose, CA, June 2013, pp. 23–27.

[5] R. Han,M.M. Ghanem, L. Guo, Y. Guo,M.Osmond, Enabling cost-aware and adap-
tive elasticity of multi-tier cloud applications, Future Gener. Comput. Syst. 32 (2014)
82–98.

[6] M. Li, F. Ye, M. Kim, H. Chen, H. Lei, A scalable and elastic publish/subscribe ser-
vice, in: IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), IEEE, May 2011, pp. 1254–1265.

[7] S.K. Garg, S. Versteeg, R. Buyya, A framework for ranking of cloud computing ser-
vices, Future Gener. Comput. Syst. 29 (4) (2013) 1012–1023.

23Elasticity Property Plays an Important Role

http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0005
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0005
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0015
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0015
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0015
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0020
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0020
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0020
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0025
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0025
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0025
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0030
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0030
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0030
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0035
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0035

[8] F. Perez-Sorrosal, M. Patiño-Martinez, R. Jimenez-Peris, B. Kemme, Elastic
SI-Cache: consistent and scalable caching in multi-tier architectures, VLDB J.
20 (6) (2011) 841–865.

[9] E. Schouten, Rapid Elasticity and the Cloud, http://www.thoughtsoncloud.com/
2012/09/rapid-elasticity-and-the-cloud, 2015. November.

[10] P.C. Brebner, Is your cloud elastic enough?: performance modelling the elasticity of
infrastructure as a service (IaaS) cloud applications, in: Proceedings of the 3rd ACM/
SPEC International Conference on Performance Engineering, ACM, Boston, MA,
April 2012, pp. 263–266.

[11] X. Bai, M. Li, B. Chen, W.T. Tsai, J. Gao, Cloud testing tools, in: IEEE 6th Inter-
national Symposium on Service Oriented System Engineering (SOSE), 2011, 2011,
pp. 1–12.

[12] E.F. Coutinho, F.R. de Carvalho Sousa, P.A.L. Rego, D.G. Gomes, J.N. de Souza,
Elasticity in cloud computing: a survey, Ann. Telecommun. 70 (2015) 289–309.

[13] G. Galante, L.C.E. de Bona, A survey on cloud computing elasticity, in: IEEE Fifth
International Conference on Utility and Cloud Computing (UCC), November 2012,
pp. 263–270.

[14] G. Galante, L.C.E. De Bona, A.R.Mury, B. Schulze, Are public clouds elastic enough
for scientific computing? in: A.R. Lomuscio, S. Nepal, F. Patrizi, B. Benatallah,
I. Brandić (Eds.), Service-Oriented Computing—ICSOC 2013 Workshops,
Springer International Publishing, Berlin, Germany, 2013, pp. 294–307.

[15] Amazon CloudWatch. http://aws.amazon.com/cloudwatch, November 2015.
[16] L.M. Vaquero, L. Rodero-Merino, R. Buyya, Dynamically scaling applications in the

cloud, ACM SIGCOMM Comput. Commun. Rev. 41 (1) (2011) 45–52.
[17] Amazon Web Services. http://aws.amazon.com, November 2015.
[18] Microsoft Azure. https://azure.microsoft.com, November 2015.
[19] Google Cloud Platform. https://cloud.google.com, November 2015.
[20] D. Breitgand, E. Henis, O. Shehory, Automated and adaptive threshold setting:

enabling technology for autonomy and self-management, in: Proceedings of IEEE
Second International Conference on Autonomic Computing, ICAC, IEEE, Seattle,
WA, June 2005, pp. 204–215.

[21] S. Meng, L. Liu, V. Soundararajan, Tide: achieving self-scaling in virtualized
datacenter management middleware, in: Proceedings of the 11th International
Middleware Conference Industrial Track, ACM, Bangalore, India, November
2010, pp. 17–22.

[22] P. Marshall, K. Keahey, T. Freeman, Elastic site: using clouds to elastically extend site
resources, in: Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, IEEE Computer Society, Melbourne, Victoria,
Australia, May 2010, pp. 43–52.

[23] R.N. Calheiros, C. Vecchiola, D. Karunamoorthy, R. Buyya, The Aneka platform
andQoS-driven resource provisioning for elastic applications on hybrid clouds, Future
Gener. Comput. Syst. 28 (6) (2012) 861–870.

[24] L.R. Moore, K. Bean, T. Ellahi, A coordinated reactive and predictive approach to
cloud elasticity, Cloud Comput. 2013 (2013) 87–92.

[25] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, J. Wilkes, Agile: elastic distributed resource
scaling for infrastructure-as-a-service, in: Proceedings of the USENIX International
Conference on Automated Computing (ICAC 2013). San Jose, CA, 2013.

[26] A.N. Akansu, R.A. Haddad, Multiresolution Signal Decomposition: Transforms,
Subbands, and Wavelets, Academic Press, San Diego, CA, 2001.

[27] U. Sharma, P. Shenoy, S. Sahu, A. Shaikh, A cost-aware elasticity provisioning system
for the cloud, in: Proceedings of the 31st International Conference on Distributed
Computing Systems (ICDCS), IEEE, Minneapolis, MN, June 2011, pp. 559–570.

24 M.A.N. Bikas et al.

http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0040
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0040
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0040
http://www.thoughtsoncloud.com/2012/09/rapid-elasticity-and-the-cloud
http://www.thoughtsoncloud.com/2012/09/rapid-elasticity-and-the-cloud
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0050
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0050
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0050
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0050
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0055
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0055
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0055
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0060
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0060
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0065
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0065
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0065
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0070
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0070
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0070
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0070
http://aws.amazon.com/cloudwatch
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0075
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0075
http://aws.amazon.com
https://azure.microsoft.com
https://cloud.google.com
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0080
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0080
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0080
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0080
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0085
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0085
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0085
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0085
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0090
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0090
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0090
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0090
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0095
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0095
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0095
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0100
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0100
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0105
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0105
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0105
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0110
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0110
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0115
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0115
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0115

[28] A. Ali-Eldin, J. Tordsson, E. Elmroth, An adaptive hybrid elasticity controller for
cloud infrastructures, in: IEEE Network Operations and Management Symposium
(NOMS), IEEE, 2012, pp. 204–212.

[29] W. Iqbal, M.N. Dailey, D. Carrera, P. Janecek, Adaptive resource provisioning for
read intensive multi-tier applications in the cloud, Future Gener. Comput. Syst.
27 (6) (2011) 871–879.

[30] VMware vSphere. https://www.vmware.com/products/vsphere/features/vmotion,
November 2015.

[31] Amazon EC2 Auto-scaling. https://aws.amazon.com/autoscaling, November 2015.
[32] Microsoft Azure Service Offerings. https://azure.microsoft.com/en-us/

documentation/articles/fundamentals-application-models, November 2015.
[33] Microsoft Azure Auto-scaling. https://azure.microsoft.com/en-us/documentation/

articles/cloud-services-how-to-scale, November 2015.
[34] AzureWatch. https://www.paraleap.com/AzureWatch, November 2015.
[35] CloudMonix. http://cloudmonix.com, November 2015.
[36] Google Cloud Platform Instance Group. https://cloud.google.com/compute/docs/

instance-groups, November 2015.
[37] VMware. http://www.vmware.com, November 2015.
[38] IBM Cloud. http://www.ibm.com/cloud-computing, November 2015.
[39] Rackspace Cloud. http://www.rackspace.com/cloud, November 2015.
[40] RightScale. http://www.rightscale.com, November 2015.
[41] Scalr. http://www.scalr.com, November 2015.
[42] GoGrid. https://www.datapipe.com/gogrid, November 2015.
[43] T. Dillon, C. Wu, E. Chang, Cloud computing: issues and challenges, in: Proceedings

of the 24th IEEE International Conference on Advanced InformationNetworking and
Applications (AINA), IEEE, Perth, Australia, April 2010, pp. 27–33.

[44] The Cloud Computing Interoperability Forum. http://www.cloudforum.org,
November 2015.

[45] Guide for Cloud Portability and Interoperability Profiles. http://standards.ieee.org/
develop/project/2301.html, November 2015.

[46] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, D. Tsafrir, The resource-as-
a-service (RaaS) cloud, in: Proceedings of the 4th USENIX conference onHot Topics
in Cloud Computing, USENIX Association, Boston, MA, June 2012, p. 12.

[47] M. Mao, M. Humphrey, A performance study on the VM startup time in the cloud,
in: IEEE 5th International Conference on Cloud Computing (CLOUD), IEEE, June
2012, pp. 423–430.

[48] Halting Problem. http://en.wikipedia.org/wiki/Halting_problem, November 2015.
[49] G. Copil, D. Moldovan, H.L. Truong, S. Dustdar, SYBL: an extensible language for

controlling elasticity in cloud applications, in: Proceedings of the 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), IEEE,
Delft, Netherlands, May 2013, pp. 112–119.

[50] T. Lorido-Botran, J. Miguel-Alonso, J.A. Lozano, A review of auto-scaling techniques
for elastic applications in cloud environments, J. Grid Comput. 12 (4) (2014) 559–592.

[51] R. Buyya, R. Ranjan, R.N. Calheiros, Intercloud: utility-oriented federation of
cloud computing environments for scaling of application services, in: C.H. Hsu,
L.T. Yang, J.H. Park, S.S. Yeo (Eds.), Algorithms and Architectures for Parallel
Processing, Springer, Berlin, Heidelberg, 2010, pp. 13–31.

[52] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, S. Mankovski, Introducing STRATOS:
a cloud broker service, in: IEEE Fifth International Conference on Cloud Computing,
IEEE, June 2012, pp. 891–898.

[53] K. Kelly, A cloudbook for the cloud, Luettu 24 (2012) (2007) 30.
[54] The Aeolus Project. http://www.aeolus-project.org, November 2015.

25Elasticity Property Plays an Important Role

http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0120
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0120
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0120
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0125
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0125
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0125
https://www.vmware.com/products/vsphere/features/vmotion
https://aws.amazon.com/autoscaling
https://azure.microsoft.com/en-us/documentation/articles/fundamentals-application-models
https://azure.microsoft.com/en-us/documentation/articles/fundamentals-application-models
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-scale
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-scale
https://www.paraleap.com/AzureWatch
http://cloudmonix.com
https://cloud.google.com/compute/docs/instance-groups
https://cloud.google.com/compute/docs/instance-groups
http://www.vmware.com
http://www.ibm.com/cloud-computing
http://www.rackspace.com/cloud
http://www.rightscale.com
http://www.scalr.com
https://www.datapipe.com/gogrid
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0130
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0130
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0130
http://www.cloudforum.org
http://standards.ieee.org/develop/project/2301.html
http://standards.ieee.org/develop/project/2301.html
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0135
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0135
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0135
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0140
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0140
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0140
http://en.wikipedia.org/wiki/Halting_problem
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0145
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0145
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0145
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0145
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0150
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0150
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0155
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0155
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0155
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0155
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0160
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0160
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0160
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0165
http://www.aeolus-project.org

[55] Are Long VM Instance Spin-Up Times in the Cloud Costing You Money? http://
highscalability.com/blog/2011/3/17/are-long-vm-instance-spin-up-times-in-the-
cloud-costing-you.html, November 2015.

[56] Why does Azure Deployment Take so Long? http://stackoverflow.com/questions/
5080445/why-does-azure-deployment-take-so-long, November 2015.

[57] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema,
A performance analysis of EC2 cloud computing services for scientific computing,
in: D.R. Avresky, M. Diaz, A. Bode, B. Ciciani, E. Dekel (Eds.), Cloud Computing,
Springer, Berlin, Heidelberg, 2010, pp. 115–131.

[58] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, M. Humphrey, Early observations on the per-
formance of Windows Azure, in: Proceedings of the 19th ACM International Sympo-
sium on High Performance Distributed Computing, ACM, Chicago, IL, June 2010,
pp. 367–376.

[59] Amazon Spot Instances. http://aws.amazon.com/ec2/spot-instances, November
2015.

[60] X. Wu, Z. Shen, R. Wu, Y. Lin, Jump-start cloud: efficient deployment framework
for large-scale cloud applications, Concurr. Comput. Pract. Exper. 24 (17) (2012)
2120–2137.

[61] J. Zhu, Z. Jiang, Z. Xiao, Twinkle: a fast resource provisioning mechanism for internet
services, in: Proceedings of the IEEE INFOCOM, IEEE, Shanghai, China, April
2011, pp. 802–810.

[62] C. Tang, FVD: a high-performance virtual machine image format for cloud,
in: USENIX Annual Technical Conference, June 2011.

[63] C. Peng, M. Kim, Z. Zhang, H. Lei, VDN: virtual machine image distribution net-
work for cloud data centers, in: Proceedings of the IEEE INFOCOM, IEEE, Orlando,
FL, March 2012, pp. 181–189.

[64] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, et al., Cloud
federation in a layered service model, J. Comput. Syst. Sci. 78 (5) (2012) 1330–1344.

[65] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, V. Zolotarov, OSv—
optimizing the operating system for virtual machines, in: 2014USENIXAnnual Tech-
nical Conference, vol. 1, USENIX Association, June 2014, pp. 61–72.

[66] S. Yi, D. Kondo, A. Andrzejak, Reducing costs of spot instances via checkpointing in
the Amazon elastic compute cloud, in: IEEE 3rd International Conference on Cloud
Computing (CLOUD), IEEE, July 2010, pp. 236–243.

[67] S. Wee, Debunking real-time pricing in cloud computing, in: Proceedings of the 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), IEEE, Los Angeles, CA, May 2011, pp. 585–590.

[68] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, C. Krintz, See spot
run: using spot instances for mapreduce workflows, in: Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing, USENIX Association,
Boston, MA, June 2010, p. 7.

[69] M. Mattess, C. Vecchiola, R. Buyya, Managing peak loads by leasing cloud infrastruc-
ture services from a spot market, in: Proceedings of the 12th IEEE International Con-
ference on High Performance Computing and Communications (HPCC), IEEE,
Melbourne, Australia, September 2010, pp. 180–188.

[70] A. Andrzejak, D. Kondo, S. Yi, Decision model for cloud computing under SLA con-
straints, in: IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), IEEE, 2010, pp. 257–266.

[71] T. Yu, J. Qiu, B. Reinwald, L. Zhi, Q. Wang, N. Wang, Intelligent database place-
ment in cloud environment, in: IEEE 19th International Conference onWeb Services
(ICWS), IEEE, June 2012, pp. 544–551.

26 M.A.N. Bikas et al.

http://highscalability.com/blog/2011/3/17/are-long-vm-instance-spin-up-times-in-the-cloud-costing-you.html
http://highscalability.com/blog/2011/3/17/are-long-vm-instance-spin-up-times-in-the-cloud-costing-you.html
http://highscalability.com/blog/2011/3/17/are-long-vm-instance-spin-up-times-in-the-cloud-costing-you.html
http://stackoverflow.com/questions/5080445/why-does-azure-deployment-take-so-long
http://stackoverflow.com/questions/5080445/why-does-azure-deployment-take-so-long
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0170
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0170
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0170
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0170
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0175
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0175
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0175
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0175
http://aws.amazon.com/ec2/spot-instances
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0180
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0180
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0180
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0185
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0185
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0185
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0190
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0190
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0195
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0195
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0195
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0200
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0200
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0205
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0205
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0205
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0210
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0210
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0210
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0215
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0215
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0215
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0220
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0220
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0220
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0220
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0225
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0225
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0225
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0225
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0230
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0230
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0230
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0235
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0235
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0235

[72] Y.J. Hong, J. Xue, M. Thottethodi, Dynamic server provisioning to minimize cost
in an IaaS cloud, in: Proceedings of the ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems, ACM, San Jose,
CA, June 2011, pp. 147–148.

[73] S. Chaisiri, R. Kaewpuang, B.S. Lee, D. Niyato, Cost minimization for provisioning
virtual servers in Amazon elastic compute cloud, in: IEEE 19th International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), IEEE, 2011, pp. 85–95.

[74] J. Sohn, T.G. Robertazzi, S. Luryi, Optimizing computing costs using divisible load
analysis, IEEE Trans. Para. Distrib. Syst. 9 (3) (1998) 225–234.

[75] S. Chaisiri, B.S. Lee, D. Niyato, Robust cloud resource provisioning for cloud
computing environments, in: IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), IEEE, December 2010, pp. 1–8.

[76] S. Chaisiri, B.S. Lee, D. Niyato, Optimal virtual machine placement across multiple
cloud providers, in: IEEE Asia-Pacific Services Computing Conference, APSCC,
IEEE, December 2009, pp. 103–110.

[77] Z. Gong, X. Gu, J. Wilkes, Press: predictive elastic resource scaling for cloud systems,
in: International Conference on Network and Service Management (CNSM), IEEE,
October 2010, pp. 9–16.

[78] Z. Shen, S. Subbiah, X. Gu, J. Wilkes, Cloudscale: elastic resource scaling for
multi-tenant cloud systems, in: Proceedings of the 2nd ACM Symposium on Cloud
Computing, ACM, Cascais, Portugal, October 2011, p. 5.

[79] K. LaCurts, J. Mogul, H. Balakrishnan, Y. Turner, Cicada: introducing predictive
guarantees for cloud networks, in: USENIX HotCloud, 2014.

[80] D. Shen, J.L. Hellerstein, Predictive models for proactive network management:
application to a production web server, in: IEEE/IFIP Network Operations and
Management Symposium, NOMS, IEEE, 2000, pp. 833–846.

[81] A. Chandra, W. Gong, P. Shenoy, Dynamic resource allocation for shared data centers
using online measurements, in: K. Jeffay, I. Stoica, K. Wehrle (Eds.), Quality of
Service—IWQoS 2003, Springer, Berlin, Heidelberg, 2003, pp. 381–398.

[82] D. Gmach, J. Rolia, L. Cherkasova, A. Kemper, Capacity management and demand
prediction for next generation data centers, in: IEEE International Conference onWeb
Services, ICWS, IEEE, July 2007, pp. 43–50.

[83] N. Vasić, D. Novaković, S. Miučin, D. Kostić, R. Bianchini, Dejavu: accelerating
resource allocation in virtualized environments, ACM SIGARCH Computer Archi-
tecture News, vol. 40, ACM, New York, NY, 2012, pp. 423–436. No. 1.

[84] S. Dutta, S. Gera, A. Verma, B. Viswanathan, SmartScale: automatic application
scaling in enterprise clouds, in: IEEE Fifth International Conference on Cloud
Computing, IEEE, 2012, pp. 221–228, http://dx.doi.org/10.1109/CLOUD.
2012.12.

[85] W. Fang, Z. Lu, J. Wu, Z. Cao, RPPS: a novel resource prediction and provi-
sioning scheme in cloud data center, in: IEEE Ninth International Conference
on Services Computing, IEEE, 2012, pp. 609–616, http://dx.doi.org/10.1109/
SCC.2012.47.

[86] J. Huang, C. Li, J. Yu, Resource prediction based on double exponential smoothing
in cloud computing, in: Proceedings of 2012 2nd International Conference on
Consumer Electronics, Communications and Networks (CECNet), IEEE, Three
Gorges, China, 2012, pp. 2056–2060.

[87] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for adaptive resource
provisioning in the cloud, Future Gener. Comput. Syst. 28 (1) (2012) 155–162, http://
dx.doi.org/10.1016/j.future.2011.05.027.

27Elasticity Property Plays an Important Role

http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0240
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0240
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0240
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0240
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0245
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0245
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0245
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0245
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0250
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0250
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0255
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0255
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0255
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0260
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0260
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0260
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0265
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0265
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0265
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0270
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0270
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0270
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0275
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0275
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0280
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0280
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0280
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0285
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0285
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0285
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0290
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0290
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0290
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0295
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0295
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0295
http://dx.doi.org/10.1109/CLOUD.2012.12
http://dx.doi.org/10.1109/CLOUD.2012.12
http://dx.doi.org/10.1109/SCC.2012.47
http://dx.doi.org/10.1109/SCC.2012.47
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0310
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0310
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0310
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0310
http://dx.doi.org/10.1016/j.future.2011.05.027
http://dx.doi.org/10.1016/j.future.2011.05.027

[88] R. Prodan, V. Nae, Prediction-based real-time resource provisioning for massively
multiplayer online games, Future Gener. Comput. Syst. 25 (7) (2009) 785–793,
http://dx.doi.org/10.1016/j.future.2008.11.002.

[89] A.Y. Nikravesh, S.A. Ajila, C.H. Lung, Towards an autonomic auto-scaling predic-
tion system for cloud resource provisioning, in: IEEE/ACM 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
IEEE, 2015, pp. 35–45.

[90] P. Bodık, R. Griffith, C. Sutton, A. Fox, M. Jordan, D. Patterson, Statistical machine
learning makes automatic control practical for internet datacenters, in: Proceedings of
the 2009 Conference onHot Topics in Cloud Computing, San Diego, CA, June 2009,
p. 12.

[91] W. Dawoud, I. Takouna, C. Meinel, Elastic VM for cloud resources provisioning
optimization, in: A. Abraham, J.L. Mauri, J.F. Buford, J. Suzuki, S.M. Thampi
(Eds.), Advances in Computing and Communications, Springer, Berlin,
Heidelberg, 2011, pp. 431–445.

[92] N. Roy, A. Dubey, A. Gokhale, Efficient autoscaling in the cloud using predictive
models for workload forecasting, in: IEEE International Conference on Cloud Com-
puting (CLOUD), IEEE, July 2011, pp. 500–507.

[93] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, J. Bigus, Using control
theory to achieve service level objectives in performance management, Real-Time
Syst. 23 (1–2) (2002) 127–141.

[94] P. Padala, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, et al., Adaptive control
of virtualized resources in utility computing environments, ACM SIGOPS Operating
Systems Review, vol. 41, ACM, Lisboa, Portugal, 2007, pp. 289–302. No. 3.

[95] E. Kalyvianaki, T. Charalambous, S. Hand, Self-adaptive and self-configured CPU
resource provisioning for virtualized servers using Kalman filters, in: Proceedings of
the 6th International Conference on Autonomic Computing, ACM, Barcelona,
Spain, June 2009, pp. 117–126.

[96] P. Padala, K.Y. Hou, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, et al., Automated con-
trol of multiple virtualized resources, in: Proceedings of the 4th ACM European Con-
ference on Computer Systems, ACM, Nuremberg, Germany, April 2009, pp. 13–26.

[97] S.M. Park, M. Humphrey, Self-tuning virtual machines for predictable escience,
in: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, IEEE Computer Society, Shanghai, China, May 2009,
pp. 356–363.

[98] L. Wang, J. Xu, M. Zhao, Y. Tu, J.A. Fortes, Fuzzy modeling based resource man-
agement for virtualized database systems, in: IEEE 19th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), IEEE, 2011, pp. 32–42.

[99] A. Ali-Eldin, M. Kihl, J. Tordsson, E. Elmroth, Efficient provisioning of bursty scien-
tific workloads on the cloud using adaptive elasticity control, in: Proceedings of the 3rd
Workshop on Scientific Cloud Computing Date, ACM, Delft, Netherlands, June
2012, pp. 31–40.

[100] Z. Chen, Y. Zhu, Y. Di, S. Feng, A dynamic resource scheduling method based on
fuzzy control theory in cloud environment, J. Control Sci. Eng. 2015 (2015) 34.

[101] R.N. Calheiros, R. Ranjan, R. Buyya, Virtual machine provisioning based on analyt-
ical performance and QoS in cloud computing environments, in: International Con-
ference on Parallel Processing (ICPP), IEEE, Taipei City, Taiwan, September 2011,
pp. 295–304.

[102] D. Villela, P. Pradhan, D. Rubenstein, Provisioning servers in the application tier for
e-commerce systems, in: Twelfth IEEE InternationalWorkshop onQuality of Service,
IWQOS, IEEE, Montreal, Qu�ebec, Canada, 2004, pp. 57–66.

28 M.A.N. Bikas et al.

http://dx.doi.org/10.1016/j.future.2008.11.002
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0325
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0325
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0325
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0325
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0330
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0330
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0330
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0330
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0335
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0335
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0335
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0335
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0340
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0340
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0340
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0345
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0345
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0345
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0350
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0350
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0350
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0355
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0355
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0355
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0355
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0360
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0360
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0360
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0365
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0365
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0365
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0365
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0370
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0370
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0370
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0370
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0375
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0375
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0375
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0375
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0380
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0380
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0385
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0385
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0385
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0385
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0390
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0390
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0390
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0390

[103] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A. Tantawi, An analytical model
for multi-tier internet services and its applications, in: E. Smirni (Ed.), ACM SIG-
METRICS Performance Evaluation Review, vol. 33, ACM, Banff, Alberta,
Canada, 2005, pp. 291–302. No. 1.

[104] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, T. Wood, Agile dynamic provision-
ing of multi-tier internet applications, ACM Trans. Auton. Adap. Syst. (TAAS) 3 (1)
(2008) 1.

[105] Q. Zhang, L. Cherkasova, E. Smirni, A regression-based analytic model for dynamic
resource provisioning of multi-tier applications, in: Fourth International Conference
on Autonomic Computing, ICAC’07, IEEE, Jacksonville, FL, June 2007, p. 27.

[106] D. Bacigalupo, J. van Hemert, A. Usmani, D.N. Dillenberger, G.B. Wills, S. Jarvis,
Resource management of enterprise cloud systems using layered queuing and historical
performance models, in: IEEE International Symposium on Parallel and Distributed
Processing, Workshops and PhD Forum (IPDPSW), IEEE, Atlanta, GA, 2010,
pp. 1–8.

[107] P.D. Kaur, I. Chana, A resource elasticity framework for QoS-aware execution of
cloud applications, Future Gener. Comput. Syst. 37 (2014) 14–25.

[108] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, J. Rius, A queuing theory
model for cloud computing, J. Supercomput. 69 (1) (2014) 492–507.

[109] J. Yin, X. Lu, H. Chen, X. Zhao, N.N. Xiong, System resource utilization analysis and
prediction for cloud based applications under bursty workloads, Inform. Sci.
279 (2014) 338–357.

[110] W. Su, J. Hu, C. Lin, S. Shen, SLA-aware tenant placement and dynamic resource
provision in SaaS, in: IEEE International Conference on Web Services (ICWS),
IEEE, June 2015, pp. 615–622.

[111] J. Li, S. Su, X. Cheng,M. Song, L.Ma, J.Wang, Cost-efficient coordinated scheduling
for leasing cloud resources on hybrid workloads, Parallel Comput. 44 (2015) 1–17.

[112] X. Liu, S. Li, W. Tong, A queuing model considering resources sharing for cloud ser-
vice performance, J. Supercomput. 71 (11) (2015) 4042–4055.

ABOUT THE AUTHORS

Md Abu Naser Bikas is a Ph.D. student at

the Department of Computer Science of the

University of Illinois at Chicago. His research

interests are in the areas of Cloud Comput-

ing, Distributed Systems, and Software

Engineering. He obtained both his Master’s

and Bachelor’s degree in Computer Science

and Engineering from the Shahjalal Univer-

sity of Science & Technology, Bangladesh.

29Elasticity Property Plays an Important Role

http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0395
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0395
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0395
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0395
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0400
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0400
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0400
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0405
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0405
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0405
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0410
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0410
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0410
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0410
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0410
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0415
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0415
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0420
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0420
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0425
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0425
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0425
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0430
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0430
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0430
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0435
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0435
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0440
http://refhub.elsevier.com/S0065-2458(16)30025-0/rf0440

Abdullah Alourani is a Ph.D. student at the

Department of Computer Science of the

University of Illinois at Chicago. He received

his master’s degree in Computer Science and

Engineering from the DePaul University in

Chicago and his bachelor’s degree in Com-

puter Science and Engineering from the King

Saud University, Saudi Arabia. His current

research interests are in the areas of Software

Testing, Software Engineering, and Cloud

Computing.

Mark Grechanik is an Assistant Professor at

the Department of Computer Science of the

University of Illinois at Chicago. His research

area is software engineering in general, with

particular interests in software testing, main-

tenance, evolution, and reuse. Dr. Grechanik

earned his Ph.D. in Computer Science from

the Department of Computer Sciences of the

University of Texas at Austin. In parallel with

his academic activities, he has worked for

over 25 years as a software consultant for

startups and Fortune 500 companies. Dr.

Grechanik is a recipient of best paper awards from competitive conferences,

his research is funded by NSF and Microsoft and he holds many patents. His

ideas are implemented and used by different companies and organizations.

He is a senior member of ACM and a senior member of IEEE and he serves

on the ACM SigSoft Executive Committee. Dr. Grechanik is the General

Chair in 2016 of the IEEE International Conference on Software Testing,

Verification and Validation (ICST’16), the premier conference in all areas

related to software quality and he is elected by the popular vote as a member

of the Steering Committee of IEEE ICST. Dr. Grechanik also serves on the

Editorial board of the Springer Empirical Software Engineering Journal.

30 M.A.N. Bikas et al.

CHAPTER TWO

Input-Sensitive Profiling: A Survey
A. Alourani, M.A.N. Bikas, M. Grechanik
University of Illinois at Chicago, Chicago, IL, United States

Contents

1. Introduction 32
2. Input-Sensitive Profiling Challenges 33
3. Recent Researches on Input-Sensitive Profiling 34

3.1 Input-Sensitive Profiling 35
3.2 Search-Based Profiling 37
3.3 Algorithmic Profiling 40
3.4 Synthesis 42

4. Related Work 44
4.1 Scalability Problems 45
4.2 Program Performance Prediction 45
4.3 Code Optimization 46
4.4 Task Scheduling Optimization 46
4.5 Test Generation Analysis 47
4.6 Data-Dependence Profiling 47

5. Conclusion 47
References 48
About the Authors 51

Abstract

Input-sensitive profiling is an automated analysis technique that calculates the resource
usages (eg, the memory and the CPU usage) by methods during program execution for
different combinations of input values. In addition to enabling developers to estimate
the time and space complexities of a program, input-sensitive profiling also allows
developers to automatically detect bottlenecks during performance testing, where
the performance of a program suddenly worsens for a particular combination of input
parameter values. One of the important advantages of this profiling technique is to
identify what methods consume more resources (eg, CPU and memory usages) for spe-
cific combinations of input values and pinpoint why these methods are responsible for
intensive execution time. Hence, developers can understand and optimize performance
problems in a program, and they can predict how likely that a program might not scale
with increasing the size of the input (eg, adding more users or a larger set of values for
a given input parameter). Unfortunately, it is very difficult to identify specific input
values from a large number of combinations that lead to performance degradation

Advances in Computers, Volume 103 # 2016 Elsevier Inc.
ISSN 0065-2458 All rights reserved.
http://dx.doi.org/10.1016/bs.adcom.2016.04.002

31

http://dx.doi.org/10.1016/bs.adcom.2016.04.002

of programs. The aim of this survey is to explore the input-sensitive profiling problem
and discuss its challenges. Some recent contributions of input-sensitive profiling algo-
rithms that were developed to detect performance bottlenecks of a program are inves-
tigated and summarized.

1. INTRODUCTION

Over the years, software has become essential to perform many of

the tasks of daily life, and thus, it is important to ensure the efficiency

and reliability of that software. During software maintenance and evolution,

performance profiling is used to guide developers in identifying possible bot-

tlenecks [1], where the performance of a program suddenly worsens for a

particular combination of input values.

Traditional profiling has been used since the 1970s [2]. Programs are rep-

resented as control flow graphs, where nodes represent methods and edges

represent control flows between these methods. Traditional profilers link

performance metrics to nodes and paths in control flow graphs or call graphs

by gathering performance measurements (eg, execution time) for specific

input values [3]. These traditional profilers can help stakeholders to improve

the performance of software applications by pinpointing methods that are

responsible for excessive resource usage. However, these profiling tech-

niques do not identify how the performances of method executions differ

with the increasing size of the input. Running the same method with dif-

ferent combinations of input values often results in different resource con-

sumptions. For instance, a particular method may operate efficiently for a

small size of input but proves inadequate when the size of the inputs becomes

larger. In addition, the key flaw of traditional profiling techniques is based on

the assumption that both the size and the type of the input data are given in

advance as a specific combination of values [4]. Thus, the possibility of iden-

tifying the performance bottlenecks of a program that depends on the size

and the type of the input data is significantly reduced.

Input-sensitive profiling is motivated by the limitations of the traditional

profiling techniques to deduce the size and type of the input data for

detecting possible degradations during performance testing, where the per-

formance of a program suddenly worsens for a particular combination of

input parameter values. The interest of researchers in input-sensitive profil-

ing problems has experienced significant growth in the recent years. We

consider a motivating example to illustrate the need for input-sensitive

32 A. Alourani et al.

profiling techniques [5]. The COSMOS circuit simulator was originally

developed by Randal E. Bryant and his colleagues at Carnegie Mellon Uni-

versity (CMU) [6], and we use it to demonstrate how its methodwas initially

efficient but proved inadequate when the size of the inputs became larger.

The circuit simulator was used by a major semiconductor manufacturer

company, and the manufacturer modified several methods of the simulator

to improve its performance. The approach of hashing on bounded-length

name prefixes, which refers to the maximum length of letters defined in

mapping signal names to electrical nodes, rather than entire names was used

to modify these methods. The simulator speed was increased on all bench-

marks due to this modification. However, hierarchical naming schemes

were used later when circuits became larger, and many signal names even-

tually hashed to the same buckets because their names ended up sharing

common long prefixes. Consequently, the start-up time of the simulator sig-

nificantly increased to an unacceptable delay of hours as compared to the

range of minutes for a normal start-up time. Analyzing the problem took

many days, increased costs, and reduced developer productivity. Many other

examples of large software projects that underwent the same kind of prob-

lems are reported in the past literature [7].

This chapter is organized as follows: Section 2 presents input-sensitive

profiling challenges. Section 3 summarizes and critiques three recent

researches on input-sensitive profiling. Section 4 analyzes the related works

on input-sensitive profiling and, finally, we conclude in Section 5.

2. INPUT-SENSITIVE PROFILING CHALLENGES

The main problem with profiling is that it is impossible to execute a

program with all combinations of all input values, which could be infinite.

As a result, engineers try to assess the performance of a program across a rep-

resentative set of input values. One way to do this is through benchmarking

[8], where benchmark inputs represent all input values, and a program that is

efficient for the benchmarks is assumed to be efficient for all inputs. How-

ever, it is imperative to note that selecting benchmark input values does not

guarantee the efficiency of detecting any unknown asymptotic inefficiencies

embedded in a program. One of the principal challenges with profiling is the

inability to detect performance problems that depend on specific input

values and automatically infer the size and the type of the input data whose

executions contribute most to possible degradations of a program during

performance testing.

33Input-Sensitive Profiling

Another challenge lies in the profiling of nontrivial applications that

involve a large number of combinations of values of input variables. A lot

of nontrivial applications contain complex logic embodied in their source

code that is expressed by using different nested control flow instructions,

where their branch conditions evaluate the expressions according to wide

range values of input variables. For instance, 20 inputs of integer type in

value range (0–9) yields 1020 combinations [4]. In addition to the challenge

of efficiency, detecting specific bottlenecks is a challenge. Although some

input-sensitive profiling can pinpoint the cause of input variables (eg, the

linked list and the array) that are responsible for excessive resource usage,

it is difficult to identify the root cause of input variables that encode data

in primitive data types (eg, integer type) [9].

3. RECENT RESEARCHES ON INPUT-SENSITIVE
PROFILING

In this survey, we review and summarize three recent contributions of

input-sensitive profiling algorithms that are highly representative of main

trends in application profiling. These algorithms promise to identify what

methods consumemore resources (eg, CPU andmemory usages) for specific

combinations of input values and pinpoint why these methods are respon-

sible for intensive execution time. In the first paper, “Input-Sensitive

Profiling,” Coppa, Demetrescu, and Finocchi propose an automated profil-

ing methodology that instruments a programwith different size of the inputs

to assist developers in discovering inefficiencies, where the performance of a

program suddenly worsens with the increasing size of the input, and in esti-

mating the time complexity of each method in the program. The important

feature of this profiling methodology is the capability to automatically mea-

sure the size of the input for a generic source code fragment of a method. In

the second paper, “Automating Performance Bottleneck Detection using

Search-Based Application Profiling,” Shen, Lo, Poshyvanyk, and Grechanik

propose an automated methodology to detect bottleneck by utilizing a

search-based input-sensitive mechanism. Their main concept is to employ

a genetic algorithm to search for a particular combination of input parameter

values that improves the objective (eg, execution time) of the fitness func-

tion in identifying performance bottlenecks, where the performance of a

program suddenly worsens for a particular combination of input values.

In the third paper, “Algorithmic Profiling,” Zaparanuks and Hauswirth pro-

pose an automated profiling methodology for understanding how the

34 A. Alourani et al.

resource usage measurements are affected individually by the size of the

input, the algorithm (eg, recursions and loops), and the underlying imple-

mentation of algorithms (eg, traversing a data structure iteratively or recur-

sively). The important feature of this profiling algorithm is the ability to

pinpoint why these methods are responsible for excessive execution time.

3.1 Input-Sensitive Profiling
3.1.1 Summary
Although traditional techniques of performance profiling could help collect

important information (eg, execution time) for assessing program behavior

and for guiding code optimization to improve implementations that con-

sume intensive resources, they do not identify how a program scales with

increasing the size of its input. That is, these techniques do not detect the

root causes of scalability problems in software applications. For instance, a

method may initially execute efficiently on a particular size of input, but

in later releases of the application it may become a bottleneck, where

the performance of the application suddenly worsens with the increasing size

of the input. In general, traditional profiling techniques lack a suitable way of

discovering inefficiencies of methods.

Coppa, Demetrescu, and Finocchi contribute toward the solution called

input-sensitive profiling by proposing an automated profiling methodology to

assist programmers in identifying inefficiencies characterizing the behavior

and estimating the time complexity of methods within a program. Aprof, a

Valgrind-based tool [10] used to build dynamic profile tools by providing

an automatic instrumentation framework to support several operations of

memory management, was developed to automatically assess the perfor-

mance ofmethods in a program for a specific size of input during performance

testing. This profiling technique explores an essential principle in context-

sensitive profiling [11], which maps performance metrics to paths in call

graphs by automatically linking a cost value (eg, execution time) to a specific

size of input instead of to programcomponents in paths (eg, execution traces),

including branch conditions, loop statements, or procedure calls.

The authors of Aprof introduced a time-efficient algorithm for comput-

ing a metric called read memory size (RMS), which is used to estimate the size

of input based on the number of memory cells accessed by a certain method.

The main idea of the algorithm is to store the partial RMS data that can be

speedily updated during RMS calculation and effortlessly derived when a

method is completed. This algorithm reduces the amount of information

stored and improves the speed of the algorithm. For a method executed

35Input-Sensitive Profiling

within a program, Aprof automatically collects a set of performance tuples

that contain the different values of the RMS linked to the statistically

analyzed functions (eg, the maximum and minimum execution time) and

generates performance plots that can be analyzed by developers to detect

inefficiencies of methods. These plots provide developers with informative

visualization insights into how a program behaves in relation to different

sizes of its inputs during performance testing.

The effectiveness of Aprof compared to a traditional profiling tool

called Gprof [12] was evaluated using a simple word frequency counting

program called wf-0.41 [13], which counts the frequency of words using

two methods: addword, which is used to add a word to a hash table, and

str_tolower, which is used to change all letters of a word to lower case.

The ability of both profiling tools to detect the inefficiencies of a method

was evaluated using wf-0.41 on two different string lengths of input. In con-

trast to Gprof, Aprof was able to identify the presence of inefficiencies in the

str_tolower method when the size of its input became larger even though

this method initially executed efficiently for a small size of input. The cost

of the method rises quadratically as the length of the input string increases.

In addition, the efficiency of Aprof was evaluated against two common

Valgrind-based tools, memcheck and callgrind, using a set of SPEC

CPU2006 benchmarks [14]. Memcheck is used to identify memory-related

errors, whereas callgrind is used to produce a branch prediction profiler and

generate a cache of a call graph. Although the tools do not solve similar analysis

problems, they use the same instrumentation infrastructure as Valgrind, which

explains the significant portion of the execution times. In general, theValgrind

tools delivered similar overall execution time despite the facts that callgrind

does not trace method read and write memory accesses and memcheck does

not tracemethodcall and return,which significantly contribute to a proportion

of the execution times. However, when comparing Aprof to memcheck,

which likewise utilizes the memory shadowing method, Aprof needs about

20% additional space.To sumup, the input-sensitive profiling technique com-

pared to traditional techniques proves the ability tohelpdevelopers in detecting

inefficiencies and approximating the time complexity of methods within a

program. In addition, Aprof delivered an effective and efficient performance

profiling solution to detect the inefficiencies of methods in a program.

3.1.2 Critique
Some limitations of input-sensitive profiling technique are discussed that

may form a direction for future research. The first limitation is that Aprof

36 A. Alourani et al.

does not estimate the time complexity of the entire program by missing

communication between threads and data generated via an operating system

(eg, system calls of I/O or network operations). This profiling technique has

not been generalized to handle all types of underlying platforms, specifically

those that are not eligible to be instrumented by Valgrind [10], which is the

underlying implementation of Aprof and is used to build dynamic profile

tools by providing an automatic instrumentation framework to support sev-

eral operations of memory management. In addition, the assumption of

computing the time complexity of a method depends on the size of the input

and not on the actual values of the input. However, the time complexity of a

method is highly associated with the size and the type of its input data.

Finally, Aprof often collects a set of performance tuples, which contain

the values of the RMS linked to the statistically analyzed functions

(eg, the maximum and minimum execution time) and generates perfor-

mance plots upon a single run. Thus, it may fail to detect root causes of scal-

ability problems, specifically those that occur on uncovered bad execution

traces by a particular run of a software application.

3.2 Search-Based Profiling
3.2.1 Summary
In the paper, Shen, Luo, Poshyvanyk, and Grechanik address the main prob-

lem of profiling nontrivial applications that involve a large number of com-

binations of input parameter values. A lot of nontrivial applications contain

complex logic embodied in the source code, which is expressed by using

different nested control flow instructions, where the branch conditions eval-

uate the expressions according to the wide range values of the input vari-

ables. The problem has been inspired by the difficulty of detecting

performance problems that depend on specific input values when the per-

formance of the program suddenly worsens for a particular combination of

input values during performance testing. Moreover, the problem has been

motivated by the possibility to infer the size and the type of the input data

whose executions contribute the most to possible bottlenecks automatically.

It is also impossible to execute a program with all combinations of all input

values, which could be infinite. It is increasingly important to find a way of

exploring the input parameter space to enable profilers to automatically

extract a specific combination of input values that increase the precision

of detecting bottlenecks.

The authors propose a profiling methodology to automate bottleneck

discovery by utilizing a search-based input-sensitive mechanism. The main

37Input-Sensitive Profiling

concept of the methodology is to employ a genetic algorithm to search for a

particular combination of input parameter values that improve the objective

(eg, the execution time) of the fitness function in identifying performance

bottlenecks. Genetic algorithm-driven profiler (GA-prof) was developed

to automatically and accurately identify performance bottlenecks by inte-

grating an evolutionary search-based heuristic and clustering data mining

approach. In addition, the authors make three important contributions in

the paper. First, GA-prof is the first profiling technique that automatically

explores the input parameter space to identify performance degradations.

Second, GA-prof is an efficient profiler for assessing a large number of

potential combinations of inputs and identifying bottlenecks accurately.

Finally, GA-prof and its experimental results are made available to the

public.

The authors of GA-prof introduced an efficient profiling algorithm for

exploring a large number of potential combinations of inputs to detect per-

formance degradations accurately. An evolutionary algorithm (genetic algo-

rithm) is used for exploring the different permutations of inputs. A key

element of genetic algorithms is a fitness function that is used to guide

the entire search methodology by mapping the inputs to the elapsed execu-

tion times. The set of input values that maximizes the fitness function and

leads to potential bottlenecks is chosen by applying the genetic operators

(eg, the selector, crossover, and mutation) for further investigation of per-

formance bottlenecks. These sets are categorized into good input sets that

likely steer the application toward computationally expensive paths and lon-

ger execution times. Conversely, the bad input sets lead to comparatively

lower expensive paths and execution times. A list of methods ranked in des-

cending order, where a higher ranking signifies a high chance of causing bot-

tlenecks, is computed using the different trace statistics with the traces

grouped into good and bad execution traces. The good traces consumemore

resources (eg, the memory) and cause longer execution times, whereas the

bad traces are neither resource nor time intensive. Eventually, developers

can identify possible performance bottlenecks from the top of that list for

further code optimizations to improve implementations.

The authors evaluated the performance of GA-prof on three web-based

applications: Agilefant [15], an enterprise-level project management system;

DellDVDStore [16], an online DVD renting site; and JPetStore [17], a Java

implementation of PetStore. These web-based applications are open source,

rely on databases, and communicate with back-end functions that use web

URLs as data inputs. To evaluate the effectiveness of GA-prof in identifying

38 A. Alourani et al.

a specific combination of input values whose executions contribute most to

possible degradations, GA-prof performs multiple transactions concurrently,

collects the parallel executed traces, and computes the respective execution

times of these applications. The experimental results show that GA-prof

could effectively find the possible combinations of URLs that consume

more resources (eg, the memory) and cause computationally intensive exe-

cution times. Furthermore, the effectiveness of GA-prof in detecting perfor-

mance problems that depend on specific input values was evaluated by

randomly injecting artificial bottlenecks into these applications. The exper-

imental results show that GA-prof has a higher probability of identifying the

bottlenecks in all three web-based applications. It has an 80% probability of

identifying at least five bottlenecks. However, there were times when cer-

tain bottlenecks ranked low on the list but reappeared at the top of the list.

The authors note that the occurrence is anticipated because they are using a

search-based approach that can select some values that lack optimization.

In addition, the performance effectiveness of GA-prof compared to the

closest competitive approach called FOREPOST [18], which uses a

machine learning approach to create models that associate input classes

according to application performance and produces a list of methods ranked

in descending order on the basis of their performance bottlenecks, was eval-

uated using two of the applications: JPetStore and DellDVDStore. The

experimental results demonstrated that GA-prof identified more bottlenecks

than FOREPOST even though both techniques can identify the correct

input sets, which steer the execution of the application along more compu-

tationally intensive paths. In general, GA-prof is equally effective in

detecting bottlenecks as FOREPOST. To sum up, the proposed profiling

technique proves the ability to help developers in exploring a large number

of potential combinations of inputs to identify performance degradations.

Moreover, GA-prof delivered an effective and accurate performance profil-

ing solution to detect bottlenecks in the program.

3.2.2 Critique
In the paper, the authors have pointed a few limitations with the method-

ology of GA-prof. A genetic algorithm may generate invalid URLs that

could adversely affect the results. Thus, GA-prof may require additional

functions that ensure that only valid URLs are generated. GA-prof does

not identify the methods that may utilize intensive resources without sub-

stantially affecting performance. The injection of artificial bottlenecks may

not cover some bottlenecks that due to external sources (eg, the delay in

39Input-Sensitive Profiling

network communications), and hot spots may not always appear in random

areas of the program. Finally, although GA-prof has a few limitations, it

enables developers to understand and optimize performance problems in

a program by efficiently exploring a large number of potential combinations

of input values to precisely detect performance bottlenecks.

3.3 Algorithmic Profiling
3.3.1 Summary
Traditional profilers link performance metrics to nodes and paths in control

flow graphs (or call graphs) by gathering performance measurements

(eg, execution time) for specific input values to help developers improve

the performance of software applications by identifying what methods con-

sume more resources (eg, CPU and memory usage). However, these pro-

filing techniques do not pinpoint why these methods are responsible for

intensive resource usages and do not identify how the resource consump-

tions of the same method differ with the increasing size of the input

(eg, the number of nodes in an input linked list or a tree or a bigger input

array). That is, when executing an application with different sizes of inputs,

the same method of this application often consumes different resources.

A main problem with profiling techniques is that they do not explain

how the cost that measures resource usage is affected individually by the size

of the input, the algorithm (eg, recursions and loops), and the underlying

implementation of algorithms (eg, traversing a data structure iteratively or

recursively). Traditional profilers calculate resource usage by combining

these factors and provide limited information by reporting the overall cost.

It is increasingly important to find a way of identifying how individual fac-

tors, including the size of input, algorithm, and implementation, impact the

cost to uncover the relationship of the execution cost to the program input.

Zaparanuks and Hauswirth propose an automated profiling methodol-

ogy to help developers to detect algorithmic (eg, recursions and loops) inef-

ficiencies by inferring a cost function of a program that relates the cost to the

input size and to predict how the resource usage would scale with increasing

the size of the input. AlgoProf was developed to automatically identify algo-

rithms (eg, recursions and loops) in a program and infer the time complexity

of each algorithm for a specific algorithmic step (eg, the total number of loop

iterations) during performance testing. An important feature of this profiling

technique is the ability to pinpoint why methods are responsible for inten-

sive resource usages (eg, the CPU and memory) and execution times. Aside

from detecting the root causes of scalability problems in a program, this

40 A. Alourani et al.

technique can address the problem of measuring the size of the input

automatically.

The authors introduced an algorithmic profiler for computing the cost

function of a program by identifying algorithms (eg, loops and recursions)

and their inputs to measure their sizes (eg, the number of nodes in a linked

list), costs (eg, the execution times of loop iterations), and generated perfor-

mance plots that mapped input size to the cost, ie, they compute cost func-

tions for individual algorithms (eg, loops and recursions). This technique

allows developers to make an accurate estimate of the computational cost

as a function of algorithms (eg, loops and recursions) based on multiple pro-

gram runs. The profiling technique employs cost metrics based on a repe-

tition data structure access, such as the execution times of loop iterations,

as compared with the execution times of the whole method that is used

by traditional profiling techniques. These traditional techniques provide a

single cost value, such as hotness (eg, longer execution times), whereas

the algorithmic profiler provides much deeper insight into a function that

maps the cost to the size and type of the input. Thus, the algorithmic com-

plexity can be inferred more accurately by using cost functions to detect

algorithmic inefficiencies. The algorithmic profiler enables developers to

understand how the resource usage measurements are affected by the size

of the input, the algorithm, and the type of underlying implementation indi-

vidually. Aside from identifying the root causes of scalability problems in a

program, this technique pinpoints whymethods are responsible for intensive

resource usages (eg, the CPU and memory) and execution times.

The effectiveness of AlgoProf in detecting algorithmic (eg, recursions

and loops) inefficiencies was evaluated with a number of programs that

implement different algorithms (eg, recursions and loops). Every program

uses one data structure type, eg, an array, a linked list, a tree, or a graph.

AlgoProf was able to estimate the algorithmic complexities of all data struc-

tures in the programs accurately, along with inferring their cost functions to

detect algorithmic inefficiencies. Furthermore, the ability of AlgoProf to

identify the root causes of scalability problems was evaluated using a Java

program that requires the assignment of a larger array when the size of array

runs out of space. AlgoProf shows a plot that links a cost (eg, execution

times) with the growing array. If the array is grown by a single element

at a time, the cost becomes quadratic or worse, ie, exponential. If the array

is grown by doubling the size and changing a single line of the source code,

the cost can be reduced to a linear function. To sum up, the proposed pro-

filing technique proves to have the ability to help developers detect

41Input-Sensitive Profiling

algorithmic inefficiencies and pinpoint why methods are responsible for

intensive resource usage (eg, the CPU and memory) and execution time.

Moreover, AlgoProf provided an effective performance profiling solution

to estimate the time complexity and detect algorithmic inefficiencies of a

method in a program.

3.3.2 Critique
Although AlgoProf overcomes a number of problems associated with tradi-

tional profiling, it has several limitations that require further research. The

first limitation is that AlgoProf computes only approximate instead of exact

cost functions of algorithms (eg, recursions and loops) within a program.

AlgoProf can infer a cost function for only algorithms (eg, recursions and

loops) that operate on recursive data structures because it is difficult to deter-

mine the size of the inputs for algorithms (eg, mathematical functions) that

operate on primitive data types (eg, integer). Although AlgoProf can handle

multiple threads by creating a profile for every individual thread, it does not

evaluate communication between threads. Furthermore, the main limitation

of AlgoProf is the time and space overhead. AlgoProf consumes a large

amount of data storage and resource when taking complete snapshots of

the repetition data structure (eg, lists, trees, and graphs) at every access

and storing the complete snapshots in memory, which is wasteful. AlgoProf

may cluster repetition data structures (eg, lists, trees, and graphs) into algo-

rithms (eg, loops and recursions) and a notion of input that differs from a

developer’s instincts on how the application should operate. Finally, the

assumption of using an algorithm (eg, loops and recursions) by including

the input and ways of measuring and proposing cost is questionable because

it was based on a developer’s intuition.

3.4 Synthesis
This survey demonstrates that these three studies advanced the theory and

practice of input-sensitive profiling as they proposed profiling techniques

that enabled developers to detect performance bottlenecks automatically,

where the performance of a program suddenly worsens for a particular size

and type of input. A limitation of the traditional techniques is the absence of

research into how the size and type of input affects/impacts these perfor-

mance bottlenecks. These studies made contributions that addressed the lim-

itations of the traditional profiling techniques for detecting performance

bottlenecks by taking into account specific sizes and types of input. In

our future work, we will explore a combination of these algorithms to

42 A. Alourani et al.

produce more effective and efficient performance profiling solutions for fur-

ther code optimizations.

Coppa et al. and Zaparanuks et al. address the root causes of scalability

problems by identifying how a program scales when the size of its input

increases, whereas Shen et al. address the problem of exploring the input

parameter space to extract a specific combination of input values that can

help detect bottlenecks more precisely. Alternatively, Shen et al. propose

an automated profiling methodology to explore efficiently a large number

of potential combinations of input values to precisely detect performance

degradations. In contrast, Coppa et al.’s automated profiling methodology

assists programmers in identifying performance bottlenecks and estimates

the time complexity of the methods within a profiled program. On the other

hand, Zaparanuks et al. propose an automated profiling methodology

for understanding how the resource usage measurements are affected indi-

vidually by the size of the input, the algorithm (eg, recursions and loops), and

the underlying implementation of algorithms (eg, traversing a data structure

iteratively or recursively). Aside from measuring the size of the input

in a program automatically, this technique pinpoints methods that are

responsible for intensive resource usages (eg, the CPU and memory) and

execution times.

Coppa et al. introduced an algorithm suitable for computing a metric

known as the RMS, which is used in the estimation of the input size based

on the number of memory cells that have been accessed by a method. In

contrast, Zaparanuks et al. introduced an algorithmic profiler suitable for

computing the cost function of a program that links a program input to

cost metrics, which is used in the estimation of the size of input

(eg, the number of nodes in a linked list or a tree or the size of an array)

by traversing a data structure (eg, lists, trees, and graphs) iteratively or

recursively. Zaparanuks et al. used cost metrics based on a data structure

analysis, whereas Coppa et al. used cost metrics based on a low-level mem-

ory accesses to estimate the time complexity of a method. The algorithm

introduced by Zaparanuks et al., unlike the one introduced by Coppa et al.,

is capable of providing insights into the root causes of performance bottle-

necks by focusing on source code statements (eg, loop statements) and

avoiding utilizing physical memory reads and writes as the units of cost

assessment. In contrast, the algorithm introduced by Coppa et al. is more

efficient in estimating the time complexity of a method by tracing low-

level memory accesses than the one introduced by Zaparanuks et al. On

the other hand, Shen et al. introduced a profiling algorithm suitable for

43Input-Sensitive Profiling

exploring a large number of potential input combinations and identifying

bottlenecks by integrating an evolutionary search-based heuristic and clus-

tering data mining mechanism. Shen et al. employs a search-based

approach, whereas Coppa et al. and Zaparanuks et al. employ empirical

models. Although these algorithms employ different approaches, they pro-

duce accurate and efficient profiling results for assessing program behavior

and for guiding code optimization.

The effectiveness of Aprof developed by Coppa et al. compared to a tra-

ditional profiling tool called Gprof [12] was evaluated using a simple word

frequency counting program. In contrast to Gprof, Aprof was able to iden-

tify the presence of inefficiencies in a method when the size of its input

became larger. The efficiency of Aprof developed by Coppa et al. was ana-

lyzed by delivering less overall execution time and an additional 20% space

compared to competitive traditional profiling tools. The effectiveness of the

GA-prof tool developed by Shen et al. was analyzed by finding input com-

binations that cause performance bottlenecks. The performance effective-

ness of GA-prof developed by Shen et al. compared to the closest

competitive approach called FOREPOST was evaluated using nontrivial

web applications. The experimental results demonstrated that GA-prof is

equally effective in detecting bottlenecks as FOREPOST. Finally, the effec-

tiveness of AlgoProf developed by Zaparanuks in detecting algorithmic

(eg, recursions and loops) inefficiencies was evaluated with a number of pro-

grams. AlgoProf was able to estimate the algorithmic complexities of all data

structures in the programs accurately, along with inferring their cost func-

tions to detect algorithmic inefficiencies. Although these tools apply differ-

ent techniques, they enable developers to detect performance bottlenecks

for further code optimizations. To sum up, the synthesis has discussed the

findings, similarities, and differences obtained by these studies that focused

on input-sensitive profiling techniques. These studies have proposed

solutions to the problems associated with traditional algorithm profilers.

Although these profiling techniques have some limitations, they can effec-

tively and accurately detect performance bottlenecks.

4. RELATED WORK

The interest of researchers in input-sensitive profiling problems has

experienced significant growth in recent years. We provide a brief survey

on related work of input-sensitive profiling algorithms that are highly

representative of main trends in program profiling.

44 A. Alourani et al.

4.1 Scalability Problems
Several techniques for input-sensitive profiling have been studied in Refs.

[19–23] to address scalability problems. Toffola et al. [19] employed a

memoization-based mechanism by a scalable comparing of inputs and out-

puts instead of objects of all method calls to find identical methods that fre-

quently execute similar computations. Coppa et al. [20] introduced an

extended algorithm of the work [7] that was suitable for computing a devel-

oped metric of the RMS, which is used in the estimation of the input size

performed by nondeterministic memory accesses by the operating system

kernel as auxiliary threads (eg, system calls of I/O or network operations).

Marin et al. [21] described how the performance of an application scale for

different sizes of its inputs; utilizing multiple-run data depends on specific

input parameters. Xiao et al. [22] proposed a multiexecution profiling tech-

nique to detect unscalable methods with increasing the size of its input.

Goldsmith et al. [23] introduced a technique to predict how an application’s

performance scales given different sizes of workloads for each routine in a

program by linking the execution time to the input size. This technique also

enables software engineers to detect the bugs in an application’s performance

that are caused by asymptotic inefficiencies to decrease the computation

complexity of a program. On the other hands, some works [24–26] pro-
posed techniques based on different execution and code patterns that might

lead to performance problems. They do not identify how a program scales

with increasing the size of its input.

4.2 Program Performance Prediction
Several studies have focused on program performance prediction by taking

into account different input-sensitive techniques. Chattopadhyay used a

search-based approach by exploring the input domain using different path

programs to estimate the time complexity of the entire program [27]. Nistor

et al. used a pattern recognition approach using a common input in

smartphone applications by providing insights into how the patterns might

grow when the size of its input became larger [28]. Puschner et al. [29] pro-

posed a technique based on an evolutionary algorithm to identify the paths

of a program for a specific input domain during performance testing. This

technique explores the entire program locality depending on a couple of

training runs of the program. Qi et al. [30] introduced a technique by com-

bining multiple paths to enable path-based testing. A couple paths are com-

bined as long as they have a similar input–output relationship (eg, the same

45Input-Sensitive Profiling

expression of output). Kwon et al. [31] proposed a technique based on a

machine learning algorithm utilizing multiple training inputs to predict

the performance of a smartphone application. However, the technique

was measured on the intensity of the CPU with a few user interactions.

Hazelwood et al. [32] analyzed the performance problems related to pred-

icated code and whenever the input of a program changes utilizing dynamic

profiling to detect hard-to-predict branches for a given input set.

4.3 Code Optimization
Other techniques have focused on code optimization utilizing various

input-sensitive approaches. Coppa [33] employed a visualization-based

approach by providing interactive graphical charts of performance profiles

to pinpoint the most crucial methods in a program and estimate their time

complexities. Ding et al. [34] proposed a self-refining input-sensitive algo-

rithmic autotuning approach that determines what algorithmic optimization

to use based on the varying input combinations. The authors used clustering

to find automatically similar input sets in the multidimensional feature space

and then used a statistical learning model to build an input classifier to make

input-sensitive algorithmic choice by optimizing the search space and input

space complexity. Küstner et al. [35] proposed an argument controlled

profiling, which focused on the changing value of functions arguments as

part of the profiling context in order to guide code optimization. This

approach is useful in finding performance problems in recursive functions.

Likewise, several studies [36–40] addressed the problem of input-centric

dynamic program optimizations, where inputs of the program have to be

characterized differently depending on the target application behavior.

These studies respond to dynamic changes in the behavior of the system,

unlike Ref. [34], which adapt its configurations proactively depending on

the inputs of the program.

4.4 Task Scheduling Optimization
Kofler et al. [41] proposed an input-sensitive approach to automatically dis-

tributeOpenCLworkloads over multiple heterogeneous devices that consist

multicore CPUs and GPUs. They performed the workload prediction based

on an Artificial Neural Networks by analyzing static program features

(eg, floating-point operations, the number of loops, etc.) and dynamic pro-

gram features (eg, data transfer size and runtime overhead, etc.) with varying

input data. Similarly, Grasso et al., Wen et al., and Grewe et al. [42–44]

46 A. Alourani et al.

proposed machine learning-based OpenCL task scheduling schemes to par-

tition kernels between multiple devices automatically by considering input

data size at runtime. Runtime profiling used in Ref. [41] to generate the dis-

tribution model that may introduce significant runtime overhead, whereas

Grasso et al., Wen et al., and Grewe et al. [42–44] used offline training data

to build their predictor, where the prediction accuracy depends on the size of

training data set. Some other studies [36,45,46] also explored the effect of

different input sizes to perform some task scheduling optimizations on

GPU program.

4.5 Test Generation Analysis
There are a few literatures on test generation analyses to address performance

problems. Burnim et al. [47] proposed a technique that creates tests based on

the input of a program to identify the worst-case complexity. Pradel et al. [48]

proposed a technique that generates tests for a concurrent program to perform

performance regression testing automatically. Killian et al. [49] focused on the

automatic identification of performance bugs in distributed systems by gener-

ating random simulations tests. However, this technique does not estimate the

time complexity of the entire program. Wall et al. [50] introduced the initial

metrics for measuring the representative data for various input sets. The work

defined the similarities and differences within referenced global variables, pro-

cedure calls, and basic blocks.

4.6 Data-Dependence Profiling
Some works targeted data dependence profiling have been studied in liter-

ature. Zhang et al. [51] designed a data dependence distance profiling tool

called Alchemist to identify the existence of concurrency in programs auto-

matically. The tool identifies constructs in program regions to be selected for

asynchronous execution. Wu et al. [52] used profiling technique based on

data dependences to guide the selection process of compiler-driven task

targeted at thread level speculation. Chen et al. [53] designed a data depen-

dence profiling technique aimed at speculative optimizations.

5. CONCLUSION

In this survey, we review and summarize three recent studies of input-

sensitive profiling algorithms that identify methods that consume more

47Input-Sensitive Profiling

resources (eg, CPU and memory usages) for specific types and sizes of input

and give causes why these methods are responsible for excessive execution

time. These studies have proposed solutions to the problems associated with

traditional algorithm profilers. In the first paper, “Input-Sensitive Profiling,”

Coppa, Demetrescu, and Finocchi propose an automated profiling method-

ology to assist programmers in identifying inefficiencies characterizing the

behavior and estimating the time complexity of methods within a profiled

program. In the second paper, “Automating Performance BottleneckDetec-

tion using Search-Based Application Profiling,” Shen, Lo, Poshyvanyk, and

Grechanik propose an automated profiling methodology to efficiently

explore a large number of potential combinations of input values to detect

performance degradations precisely. In the third paper, “Algorithmic

Profiling,” Zaparanuks and Hauswirth propose profiling methodology to

assist programmers in understanding how the cost that measures resource

usage is affected by the size of the input, the algorithm, and the underlying

implementation individually. Finally, although these profiling techniques

have some limitations, these accurate and efficient profiling techniques

enable developers to understand and optimize performance problems in a

profiled program.

REFERENCES
[1] N. Chapin, J.E. Hale, K.M. Khan, J.F. Ramil, W.G. Tan, Types of software evolution

and software maintenance, J. Softw. Maint. Evol. Res. Pract. 13 (1) (2001) 3–30.
[2] D.E. Knuth, F.R. Stevenson, Optimal measurement points for program frequency

counts, BIT Numer. Math. 13 (3) (1973) 313–322.
[3] J.M. Spivey, Fast, accurate call graph profiling, Softw. Pract. Exp. 34 (3) (2004)

249–264.
[4] D. Shen, Q. Luo, D. Poshyvanyk, M. Grechanik, Automating performance bottleneck

detection using search-based application profiling, in: Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, ACM, Baltimore, MD, July 2015,
pp. 270–281.

[5] R.E. Bryant. Personal communication, September 2011.
[6] D. Beatty, K. Brace, R.E. Bryant, K. Cho, L. Huang, User’s Guide to COSMOS, a

Compiled Simulator for MOS Circuits, Computer Science Department, Carnegie
Melon University, Miami, FL, 1987.

[7] E. Coppa, C. Demetrescu, I. Finocchi, Input-sensitive profiling, ACM SIGPLANNot.
47 (6) (2012) 89–98.

[8] W. Pfeiffer, N.J. Wright, Modeling and predicting application performance on parallel
computers using HPC challenge benchmarks, in: IEEE International Symposium on
Parallel and Distributed Processing. IPDPS, IEEE, Miami, FL, April 2008, pp. 1–12.

[9] D. Zaparanuks, M. Hauswirth, Algorithmic profiling, ACM SIGPLAN Not. 47 (6)
(2012) 67–76.

[10] N. Nethercote, J. Seward, Valgrind: a framework for heavyweight dynamic binary
instrumentation, ACM SIGPLAN Not. 42 (6) (2007) 89–100.

48 A. Alourani et al.

http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0005
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0005
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0010
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0010
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0015
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0015
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0020
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0020
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0020
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0020
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0025
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0025
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0025
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0030
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0030
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0035
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0035
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0035
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0040
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0040
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0045
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0045

[11] G. Ammons, T. Ball, J.R. Larus, Exploiting hardware performance counters with flow
and context sensitive profiling, ACM SIGPLAN Not. 32 (5) (1997) 85–96.

[12] S.L. Graham, P.B. Kessler, M.K. Mckusick, Gprof: a call graph execution profiler,
ACM SIGPLAN Not. 17 (6) (1982) 120–126.

[13] Project. wf: simple word frequency counter (Build Date: Jan 15 2012). http://
www.rpm-find.net//linux/RPM/archive.fedoraproject.org/fedora/linux/releases/17/
Everything/source/SRPMS/w/wf-0.41-6.fc17.src.html, 2015.

[14] J.L. Henning, SPEC CPU2006 benchmark descriptions, ACM SIGARCH Comput.
Archit. News 34 (4) (2006) 1–17.

[15] Agilefant, http://www.agilefant.com, December 2015.
[16] DellDVDStore, http://linux.dell.com/dvdstore, December 2015.
[17] JPetStore, https://github.com/mybatis/jpetstore-6, December 2015.
[18] M. Grechanik, C. Fu, Q. Xie, Automatically finding performance problems with

feedback-directed learning software testing, in: 34th International Conference on
Software Engineering (ICSE), IEEE, Zurich, Switzerland, June 2012, pp. 156–166.

[19] L. Della Toffola, M. Pradel, T.R. Gross, Performance problems you can fix: a
dynamic analysis of memoization opportunities, in: OOPSLA 2015 Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, ACM, Pittsburgh, PA, October 2015,
pp. 607–622.

[20] E. Coppa, C. Demetrescu, I. Finocchi, R. Marotta, Multithreaded input-sensitive
profiling, arXiv Preprint (2013). arXiv:1304.3804.

[21] G. Marin, J. Mellor-Crummey, Cross-architecture performance predictions for scien-
tific applications using parameterized models, ACM SIGMETRICS Perform. Eval.
Rev. 32 (1) (2004) 2–13.

[22] X. Xiao, S. Han, D. Zhang, T. Xie, Context-sensitive delta inference for identifying
workload-dependent performance bottlenecks, in: Proceedings of the 2013 Interna-
tional Symposium on Software Testing and Analysis, ACM, Lugano, Switzerland,
July 2013, pp. 90–100.

[23] S.F. Goldsmith, A.S. Aiken, D.S. Wilkerson, Measuring empirical computational com-
plexity, in: Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ACM, Dubrovnik, Croatia, September 2007, pp. 395–404.

[24] G. Jin, L. Song, X. Shi, J. Scherpelz, S. Lu, Understanding and detecting real-world
performance bugs, ACM SIGPLAN Not. 47 (6) (2012) 77–88.

[25] K. Nguyen, G. Xu, Cachetor: detecting cacheable data to remove bloat, in: Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, ACM, Saint
Petersburg, Russia, August 2013, pp. 268–278.

[26] A. Nistor, L. Song, D. Marinov, S. Lu, Toddler: detecting performance problems via
similar memory-access patterns, in: Proceedings of the 2013 International Conference
on Software Engineering, IEEE Press, San Francisco, CA, May 2013, pp. 562–571.

[27] S. Chattopadhyay, L.K. Chong, A. Roychoudhury, Program performance spectrum,
ACM SIGPLAN Not. 48 (5) (2013) 65–76.

[28] A. Nistor, L. Ravindranath, SunCat: helping developers understand and predict
performance problems in Smartphone applications, in: Proceedings of the 2014
International Symposium on Software Testing and Analysis, ACM, San Jose, CA,
July 2014, pp. 282–292.

[29] P. Puschner, R. Nossal, Testing the results of static worst-case execution-time analysis,
in: Proceedings of the 19th IEEE Real-Time Systems Symposium, IEEE, Madrid,
Spain, December 1998, pp. 134–143.

[30] D. Qi, H.D. Nguyen, A. Roychoudhury, Path exploration based on symbolic output,
ACM Trans. Softw. Eng. Methodol. 22 (4) (2013) 32.

49Input-Sensitive Profiling

http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0050
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0050
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0055
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0055
http://www.rpm-find.net//linux/RPM/archive.fedoraproject.org/fedora/linux/releases/17/Everything/source/SRPMS/w/wf-0.41-6.fc17.src.html
http://www.rpm-find.net//linux/RPM/archive.fedoraproject.org/fedora/linux/releases/17/Everything/source/SRPMS/w/wf-0.41-6.fc17.src.html
http://www.rpm-find.net//linux/RPM/archive.fedoraproject.org/fedora/linux/releases/17/Everything/source/SRPMS/w/wf-0.41-6.fc17.src.html
http://www.rpm-find.net//linux/RPM/archive.fedoraproject.org/fedora/linux/releases/17/Everything/source/SRPMS/w/wf-0.41-6.fc17.src.html
http://www.rpm-find.net//linux/RPM/archive.fedoraproject.org/fedora/linux/releases/17/Everything/source/SRPMS/w/wf-0.41-6.fc17.src.html
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0060
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0060
http://www.agilefant.com
http://www.agilefant.com
http://linux.dell.com/dvdstore
http://linux.dell.com/dvdstore
https://github.com/mybatis/jpetstore-6
https://github.com/mybatis/jpetstore-6
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0065
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0065
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0065
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0070
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0070
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0070
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0070
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0070
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0075
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0075
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0080
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0080
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0080
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0085
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0085
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0085
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0085
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0090
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0090
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0090
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0090
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0095
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0095
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0100
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0100
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0100
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0105
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0105
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0105
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0110
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0110
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0115
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0115
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0115
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0115
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0120
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0120
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0120
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0125
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0125

[31] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.G. Chun, L. Huang, P. Maniatis,
M. Naik, Y. Paek, Mantis: automatic performance prediction for smartphone applica-
tions, in: Proceedings of the 2013 USENIX Conference on Annual Technical Confer-
ence, USENIX Association, San Jose, CA, June 2013, pp. 297–308.

[32] K.M. Hazelwood, T.M. Conte, A lightweight algorithm for dynamic if-conversion
during dynamic optimization, in: Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, IEEE, Philadelphia, PA, 2000,
pp. 71–80.

[33] E. Coppa, An interactive visualization framework for performance analysis,
in: Proceedings of the 8th International Conference on Performance Evaluation
Methodologies and Tools, December, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Bratislava, Slovakia, 2014,
pp. 159–164.

[34] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.M. O’Reilly, S. Amarasinghe,
Autotuning algorithmic choice for input sensitivity, in: PLDI, 2014, pp. 379–390.

[35] T. Küstner, J.Weidendorfer, T.Weinzierl, Argument controlled profiling, in: Euro-Par
2009—Parallel Processing Workshops, Springer, Berlin and Heidelberg, 2010,
pp. 177–184.

[36] M. Samadi, A. Hormati, M. Mehrara, J. Lee, S. Mahlke, Adaptive input-aware com-
pilation for graphics engines, ACM SIGPLAN Not. 47 (6) (2012, June) 13–22.

[37] K. Tian, Y. Jiang, E.Z. Zhang, X. Shen, An input-centric paradigm for program
dynamic optimizations, ACM SIGPLAN Not. 45 (10) (2010) 125–139.

[38] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, T. Kovacshazy, An approach
to self-adaptive software based on supervisory control, in: Self-Adaptive Software:
Applications, Springer, Berlin and Heidelberg, 2003, pp. 24–38.

[39] X. Li, M.J. Garzarán, D. Padua, A dynamically tuned sorting library, in: International
Symposium on Code Generation and Optimization. CGO 2004, IEEE, Palo Alto, CA,
March 2004, pp. 111–122.

[40] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N.M. Amato, L. Rauchwerger,
A framework for adaptive algorithm selection in STAPL, in: Proceedings of the Tenth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
ACM, Chicago, IL, June 2005, pp. 277–288.

[41] K. Kofler, I. Grasso, B. Cosenza, T. Fahringer, An automatic input-sensitive approach
for heterogeneous task partitioning, in: Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ACM, Eugene, OR,
June 2013, pp. 149–160.

[42] I. Grasso, K. Kofler, B. Cosenza, T. Fahringer, Automatic problem size sensitive task
partitioning on heterogeneous parallel systems, ACM SIGPLAN Not. 48 (8) (2013)
281–282.

[43] Y. Wen, Z. Wang, M. O’Boyle, Smart multi-task scheduling for OpenCL programs on
CPU/GPU heterogeneous platforms, in: Proceedings of the 21st Annual IEEE Inter-
national Conference on High Performance Computing (HiPC’14), 2014.

[44] D. Grewe, Z. Wang, M.F. O’Boyle, OpenCL task partitioning in the presence of GPU
contention, in: Languages and Compilers for Parallel Computing, Springer
International Publishing, San Jose, CA, September 2013, pp. 87–101.

[45] Y. Liu, E.Z. Zhang, X. Shen, A cross-input adaptive framework for GPU program opti-
mizations, in: IEEE International Symposium on Parallel & Distributed Processing.
IPDPS 2009, IEEE, Rome, Italy, May 2009, pp. 1–10.

[46] A. Magni, D. Grewe, N. Johnson, Input-aware auto-tuning for directive-based GPU
programming, in: Proceedings of the 6th Workshop on General Purpose Processor
Using Graphics Processing Units, ACM, Houston, TX, March 2013, pp. 66–75.

50 A. Alourani et al.

http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0130
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0130
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0130
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0130
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0135
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0135
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0135
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0135
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0140
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0140
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0140
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0140
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0140
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0145
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0145
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0150
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0150
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0150
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0155
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0155
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0160
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0160
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0165
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0165
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0165
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0170
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0170
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0170
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0175
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0175
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0175
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0175
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0180
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0180
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0180
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0180
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0185
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0185
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0185
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0190
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0190
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0190
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0195
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0195
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0195
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0200
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0200
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0200
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0205
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0205
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0205

[47] J. Burnim, S. Juvekar, K. Sen, WISE: Automated test generation for worst-case com-
plexity, in: IEEE 31st International Conference on Software Engineering. ICSE 2009,
IEEE, Vancouver, British Columbia, Canada, May 2009, pp. 463–473.

[48] M. Pradel, M. Huggler, T.R. Gross, Performance regression testing of concurrent clas-
ses, in: Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ACM, San Jose, CA, July 2014, pp. 13–25.

[49] C. Killian, K. Nagaraj, S. Pervez, R. Braud, J.W. Anderson, R. Jhala, Finding latent
performance bugs in systems implementations, in: Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ACM, Santa Fe, NM, November 2010, pp. 17–26.

[50] D.W. Wall, Predicting program behavior using real or estimated profiles, in: Proceed-
ings of the SIGPLAN ‘91 Conference on Programming Language Design and Imple-
mentation, ACM SIGPLAN Notices 26 (6), Toronto, Canada, June 1991, pp. 59–70.

[51] X. Zhang, A. Navabi, S. Jagannathan, Alchemist: a transparent dependence distance
profiling infrastructure, in: Proceedings of the 7th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, IEEE Computer Society,
Seattle, WA, March 2009, pp. 47–58.

[52] P. Wu, A. Kejariwal, C. Caşcaval, Compiler-driven dependence profiling to guide pro-
gram parallelization, in: Languages and Compilers for Parallel Computing, Springer,
Berlin and Heidelberg, 2008, pp. 232–248.

[53] T. Chen, J. Lin, X. Dai, W.C. Hsu, P.C. Yew, Data dependence profiling for specu-
lative optimizations, in: Compiler Construction, Springer, Berlin andHeidelberg, 2004,
pp. 57–72.

ABOUT THE AUTHORS

Abdullah Alourani is a Ph.D. student at the

Department of Computer Science of the

University of Illinois at Chicago. He received

his master’s degree in Computer Science and

Engineering from the DePaul University in

Chicago and his bachelor’s degree in Com-

puter Science and Engineering from the King

Saud University, Saudi Arabia. His current

research interests are in the areas of Software

Testing, Software Engineering, and Cloud

Computing.

51Input-Sensitive Profiling

http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0210
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0210
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0210
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0215
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0215
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0215
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0220
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0220
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0220
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0220
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0225
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0225
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0225
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0230
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0230
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0230
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0230
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0235
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0235
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0235
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0240
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0240
http://refhub.elsevier.com/S0065-2458(16)30026-2/rf0240

Md Abu Naser Bikas is a Ph.D. student at

the department of computer science of the

University of Illinois at Chicago. His research

interests are in the areas of Cloud Comput-

ing, Distributed Systems, and Software

Engineering. He obtained both his Master’s

and Bachelor’s degree in Computer Science

and Engineering from the Shahjalal Univer-

sity of Science & Technology, Bangladesh.

Mark Grechanik is an Assistant Professor at

the Department of Computer Science of the

University of Illinois at Chicago. His research

area is software engineering in general, with

particular interests in software testing, main-

tenance, evolution, and reuse. Dr. Grechanik

earned his Ph.D. in Computer Science from

the Department of Computer Sciences of the

University of Texas at Austin. In parallel with

his academic activities, he has worked for

over 25 years as a software consultant for

startups and Fortune 500 companies. Dr.

Grechanik is a recipient of best paper awards from competitive conferences,

his research is funded by NSF and Microsoft and he holds many patents. His

ideas are implemented and used by different companies and organizations.

He is a senior member of ACM and a senior member of IEEE and he serves

on the ACM SigSoft Executive Committee. Dr. Grechanik is the General

Chair in 2016 of the IEEE International Conference on Software Testing,

Verification and Validation (ICST’16), the premier conference in all areas

related to software quality and he is elected by the popular vote as a member

of the Steering Committee of IEEE ICST. Dr. Grechanik also serves on the

Editorial board of the Springer Empirical Software Engineering Journal.

52 A. Alourani et al.

CHAPTER THREE

Recent Advances in Regression
Testing Techniques
H. Do*
*University of North Texas, Denton, TX, USA

Contents

1. Introduction 53
2. Background 54
3. Recent Advances in Regression Testing Techniques 56

3.1 Regression Test Selection 56
3.2 Test Case Prioritization 62
3.3 Test Suite Minimization 67
3.4 Additional Remarks on Regression Testing Techniques 70

4. Conclusions 71
References 72
About the Author 77

Abstract

Software systems and their environment change are continuous. They are enhanced,
corrected, and ported to new platforms. These changes can affect a system adversely,
thus software engineers perform regression testing to ensure the quality of the mod-
ified systems. Regression testing is an integral part of most major software projects, but
as projects grow larger and the number of tests increases, performing regression testing
becomesmore costly. To address this problem, many researchers and practitioners have
proposed and empirically evaluated various regression testing techniques, such as
regression test selection, test case prioritization, and test suite minimization. Recent sur-
veys on these techniques indicate that this research area continues to grow, heuristics
and the types of data utilized become diverse, and wider application domains
have been considered. This chapter presents the current status and the trends of three
regression testing techniques and discusses recent advances of each technique.

1. INTRODUCTION

Regression testing is one of the most common means for ensuring the

quality of software products during development cycles and it is almost

Advances in Computers, Volume 103 # 2016 Elsevier Inc.
ISSN 0065-2458 All rights reserved.
http://dx.doi.org/10.1016/bs.adcom.2016.04.004

53

http://dx.doi.org/10.1016/bs.adcom.2016.04.004

universally employed by software organizations [1]. It is important for ensur-

ing software quality, but it is also expensive, accounting for a large propor-

tion of software production costs. For example, one software company has a

software product with a regression test suite containing over 30,000 test cases

that requires over 1000 machine hours to execute [2]. Hundreds of hours of

engineer time are also needed to oversee this regression testing process

(eg, setting up test runs, monitoring testing results, and maintaining testing

resources such as test cases, oracles, and automation utilities).

Numerous techniques and tools have been proposed and developed to

reduce the costs of regression testing and to aid regression testing processes,

such as test case prioritization (TCP), regression test selection (RTS), and

test suite minimization (TSM). Initially, research on regression testing relied

primarily on analytical approaches to assess different techniques (eg, [3, 4]).

However, regression testing techniques are heuristics, and to properly

understand the tradeoffs and factors that influence testing techniques in

practice, empirical studies should be performed. In addition to providing

information on tradeoffs among techniques, empirical studies also can aid

in understanding the hypotheses that should be tested and the controls that

are needed in subsequent studies of humans, which are likely to be more

expensive. The importance of empirical studies has been perceived by the

software engineering community over the past few decades, and recently

empirical evaluations of the proposed techniques or approaches have

become an essential component when researchers report their work.

Recent surveys [5–7] provide an overview of regression testing tech-

niques and their empirical evaluations that were published before 2010.

These surveys found some general trends about regression testing techniques

and areas that need to be improved as well as future directions for this

research topic. This chapter provides basic concepts of three regression

testing techniques including various data sources that the techniques utilize,

different types of techniques, and commonly used evaluation metrics for

them. This chapter also summarizes findings from the three surveys and

discusses recent advances in those three areas.

Section 2 includes background information about regression testing, and

Section 3 presents three regression testing techniques and their overall and

recent trends. Section 4 concludes this chapter.

2. BACKGROUND

This section provides background information about regression testing

and basic concepts of common regression testing techniques.

54 H. Do

Regression testing is the process of testing modified software to ensure its

continued quality. Typically, regression testing is performed by reusing test

cases developed from testing prior versions of the software system and by

creating new test cases that will be used to test new features. Informally,

regression testing can be defined as follows. As shown in Fig. 1, let P be

a program that has been modified to create a new version P0 and let T be

a test suite developed for P. In the transition from P to P0, the program could

have regressed. In other words, a previously verified behavior of P could

have turned faulty in P0. Regression testing attempts to validate P0 in order

to determine whether it has regressed.

The existing test suite, T, provides a natural starting point. In practice,

engineers often reuse all of the test cases inTall to test P
0 after removing obso-

lete test cases (Tobs) that are no longer applicable to P
0. However, as software

systems grow, the size of the test suite can become too large, thus making it

too time consuming and costly to run all the tests. Furthermore, depending

on the organization’s testing environment and situation, this retest-all

approach can be very expensive [8].

To address this problem, many researchers have proposed various

methods for improving the cost effectiveness of regression testing including

RTS, TCP, TSM, and test suite augmentation. The right side of Fig. 1

shows the test cases obtained by applying these techniques. RTS techniques

select a subset of test cases from Tall to meet some desired criterion, such as

discarding test cases (Tnon�mod) that do not execute modified code. TCP

techniques reorders test cases in Tall to enhance the effectiveness of the test

suite, such as fault detection rate. TSM reduces the size of Tall by eliminating

P ′

T

P

Add, delete, modify

Tall – Tnon-mod

Tall
(T -Tobs)

Tall + Tnew

Reordered Tall

Selection

Prioritization

Minimization

Augmentation

Tall – Tredundant

Fig. 1 Regression testing techniques.

55Recent Advances in Regression Testing Techniques

redundant test cases (Tredundant). These three techniques primarily focus on

reducing costs by reusing existing test cases. However, in regression testing,

in general, simply reusing existing test cases is not sufficient; new test cases

also may be required to test new functionality. Test suite augmentation

techniques identify newly added code areas and create new test cases (Tnew)

for them.

In this chapter, we focus on the first three regression testing techniques

that utilize existing test cases. Formal definitions of these three techniques

can be found in the literature survey [7].

3. RECENT ADVANCES IN REGRESSION TESTING
TECHNIQUES

This section introduces three regression testing techniques (RTS,

TCP, and TSM), and recent advances of these techniques.

Recent surveys on regression testing techniques [5–7] provide a compre-

hensive understanding of overall trends of the techniques and areas for

improvement. Yoo and Harman [7] surveyed 159 papers for all three tech-

niques published between 1977 and 2009 including 87 on RTS, 34 on

TSM, and 47 on TCP. Engstrom et al. [6] surveyed 27 RTS papers that

reported empirical studies published between 1997 and 2006. Catal and

Mishra [5] surveyed 120 papers on TCP published between 2001 and

2010. These surveys found that the number of publications on regression

testing area continues to grow, and in particular, the area of TCP has rapidly

expanded since 2000. They also found that heuristics became diverse includ-

ing the use of data sources, researchers have paid more attention to empirical

evaluations of regression testing techniques over the years, and various appli-

cation domains have been investigated. The following subsections include

more details about each of these techniques.

3.1 Regression Test Selection
RTS techniques (surveyed in [4, 6, 7]) reduce testing costs by selecting a

subset of test cases from an existing test suite. RTS techniques use informa-

tion about P, P 0, and T to select a subset of T with which to test P 0.
A considerable amount of research on RTS techniques has been con-

ducted since 1977 [9], and the number of publications on this area is steadily

growing [6, 7]. Early work conducted by Lenung and White [3] and

Rothermel and Harrold [10] established a theoretical foundation of RTS

56 H. Do

techniques and a framework for empirical evaluations of these techniques.

Initially, RTS techniques focused on testing procedural languages using

source code, but as the program language paradigm shifted to object-

oriented languages, and application domains became diverse, various types

of RTS techniques were developed.

Safety is an important aspect of RTS techniques. Safe RTS techniques

(eg, [11–14]) guarantee that, assuming certain preconditions are met, test

cases not selected could not have exposed faults in P 0 [4]. Informally, these

preconditions require that: (1) the test cases in T are expected to produce the

same outputs on P 0 as they did on P; ie, the specifications for these test cases

have not changed; and (2) test cases can be executed deterministically, hold-

ing all factors that might influence test behavior constant with respect to

their states when P was tested with T.

As an example of a safe technique, the graph walk approach,Dejavu [13],

utilizes control-flow graph representations of the original and modified ver-

sions of the program. To select test cases, Dejavu performs a synchronous

traversal of the control-flow graph (CFG) for P and the control-flow graph

(CFG0) for P0, identifies nodes that that have been added, deleted, or mod-

ified from CFG to CFG0, and from the test suite for P, selects all tests that

reach nodes that are new in, modified for P0, and deleted from P. To illus-

trate this approach, consider Fig. 2 [15] that shows procedure Avg and its

modified procedure, Avg0. The table shows three test cases for Avg and test

Graph walking approach

Test t1 t2 t3

Input
Empty

file
−1 1 2 3

Output 0 Error 2

Coverage
s1, s2,
s3, s9,

s10

s1, s2,
s3, s4,
s5, s9,

s10

s1, s2,
s3, s4,
s6, s7,
s8, s9,

s10

Selected Tests = {t2, t3}

Tests and statement coverage for Avg

Fig. 2 Example of safe regression test selection taken from G. Rothermel, M.J. Harrold,
Empirical studies of a safe regression test selection technique, IEEE Trans. Softw. Eng.
24 (6) (1998) 401-419.

57Recent Advances in Regression Testing Techniques

traces (statement coverage). Statement S4 has been modified, and statement

S5a has been added. Dejavu builds CFGs for Avg and Avg0, walks the two

CFGs comparing two corresponding nodes, and identifies nodes that have

been changed from the previous version. Using the test coverage informa-

tion, the approach selects test cases that exercise the changed nodes. In this

example, the graph walk approach selects two test cases, t2 and t3, for the

modified procedure Avg0.
Two other aspects of RTS techniques involve precision and efficiency.

Precision concerns the extent to which techniques correctly deduce that

specific test cases do not need to be reexecuted. Efficiency concerns the cost

of collecting the data necessary to execute an RTS technique, and the cost of

executing that technique. Tradeoffs between precision and efficiency, and

their relative cost-benefits vary with characteristics of programs, modifica-

tions, and test suites [16].

3.1.1 Data Sources and Techniques
Most of these techniques are code-based and use information about code

changes and code coverage to guide the test selection process. Depending

on the techniques implemented, in addition to coverage or change informa-

tion, other data sources (eg, code complexity, code dependency, test gran-

ularity, and fault history) have been utilized. Some techniques have used

other types of software artifacts, such as requirements specifications, and

UMLmodels [17–19]. These techniques are particularly useful when source
code is not available to the testers.

Two surveys [6, 7] classified RTS techniques into several classes, and

some of the techniques are summarized as follows (for more detailed descrip-

tions and extended discussions about them, see the two surveys):

• Firewall approach: This approach was presented by Leung and White

[20] to improve regression testing at the integration level. The approach

sets a firewall around the modified modules and the modules related to

them, and selects test cases within the firewall. This approach has been

applied to a different language paradigm (object-oriented language [21,

22]) and wider application domains (eg, GUI, COTS applications, and

distributed software [23–25]).
• Graph walking approach: This approach was presented by Rothermel

and Harrold [10, 13, 15], which was already discussed. This approach

has been further extended by many researchers in various ways, such

as, applying it to different languages (eg, C++, Java, and AspectJ)

[12, 26, 27], using various software artifacts (eg, behavior models and

58 H. Do

requirements/system specifications) [28, 29], and considering wider

application domains (eg, component-based systems and web services)

[18, 30].

• Data-flow analysis approach: This approach, presented by Harrold and

Soffa [31], identifies definition-use pairs of the variables affected by code

modification and selects test cases that executes such pairs. Other

researchers have improved the effectiveness of test selection by combin-

ing the data-flow analysis approach with other techniques, such as the

use of slicing techniques, and code coverage-based minimization/

prioritization [32, 33].

• Model-based approach: This approach uses models (eg, use cases, class/

sequence diagrams, and state models) to select test cases rather than rely-

ing on source code information. Briand et al. [34] presented an approach

that traces the relationship between UML design models and test cases,

and selects test cases that affected by design changes. Several other

researchers have presented UML model-based test selection approaches

that were applied to various application areas, such as telecommunica-

tions and component-based applications [35–37].
• Other approaches: Several other techniques that can be applied to RTS

include integer programming [9], symbolic execution [38], and slicing

[39, 40].

3.1.2 Evaluation Metrics
Initially, RTS techniques have been evaluated analytically by measuring

complexity or safety of algorithms, but to properly assess their cost effective-

ness in practice, recent research on RTS (and regression testing in general)

has employed empirical evaluations.

Because the main goal of RTS techniques is to find a subset of test cases

to be rerun, a typical evaluation metric for these techniques is the number of

test cases selected or the test case reduction rate. Savings in number of test

cases might not be proportional to savings in testing time. For example, all

the test cases excluded could be inexpensive while those not excluded could

be expensive. Thus, another evaluation metric is the time required to

execute the selected subset of the test suite on the modified version of

the program. For nonsafe techniques, the selected test cases might lose fault

detection abilities. To evaluate these techniques, precision and recall have

been used. Precision measures the ratio of selected tests that detect defects,

and recall measures the ratio of tests with faults were detected.

59Recent Advances in Regression Testing Techniques

Furthermore, RTS techniques have associated costs, and depending on

the testing processes employed and other cost factors, they may not reduce

overall regression testing costs despite improvements in rates of fault detec-

tion. If savings from RTS techniques do not exceed the costs of applying

them, no benefits are gained. Therefore, to properly evaluate RTS tech-

niques, some researchers considered tradeoffs between costs and benefits

of RTS techniques. For example, Leung and White [41] presented a cost

model that considers some of the factors (testing time, technique execution

time) that affect the cost of regression testing of a software system.

Malishevsky et al. [42] extended this work with cost models for RTS and

TCP that incorporate benefits related to omission of faults and rate of fault

detection. Do and Rothermel [2, 43] developed a cost-benefit model, the

EVOMO (EVOlution-aware economic MOdel for regression testing)

model, that helps evaluate regression testing techniques considering costs

and benefits across entire system lifetimes. EVOMO involves two equations:

one that captures the costs related to the salaries of the engineers who per-

form regression testing (to translate time spent intomonetary values) and one

that captures the revenue gains or losses related to changes in the system

release time (to translate time-to-release into monetary values). The major

cost components that EVOMO captures are as follows: costs for applying

regression testing techniques, costs associated with missed faults, costs for

artifact analysis, costs of delayed fault detection feedback, and costs associated

with obsolete tests.

3.1.3 Recent Advances
This section introduces research about RTS published after 2010. As previ-

ously mentioned, in this research area (regression testing in general), appli-

cation domains and the types of data utilized are diversified, and more

researchers consider the practicality of the techniques. Therefore, rather

than exhaustively introducing papers published between 2010 and 2015, this

section presents recent research that carries the aforementioned trends. The

same selection principle applies to TCP and TSM.

Kim et al. [44] presented a RTS technique aimed for ontology-driven

database systems because traditional RTS approaches cannot be applied

for such systems; changes in ontology systems are typically semantics and

descriptions of the data rather than code modifications. The proposed tech-

nique builds graphs for the original and modified ontologies. The ontology

knowledge consists of two entities: a set of classes that specify the concepts in

an application domain and relationships among those classes. The technique

60 H. Do

compares the two graphs and identifies the changes by collecting three sets of

entities: added entities, deleted entities, and entities affected by changes. To

select test cases using these entity sets, information about the relationship

between tests and entities for the original ontology is required. The infor-

mation was obtained by parsing the test queries and extracting the terms in

each test query. The approach was evaluated using two biomedical

ontology-driven database systems in terms of effectiveness and efficiency.

Another recent research conducted by Mirarab [45] introduced a size-

constrained regression test selection (SRTS) that selects a subset of test cases

with the predetermined size of tests using multicriteria optimization

implemented integer linear programming. Unlike existing multiobjective

approaches, the research indicated that the multicriteria optimization func-

tion tries to achieve a high fault detection rate of the selected test cases. The

proposed approach is not safe because it can discard test cases that can detect

faults, but this approach can be very practical when the company faces sit-

uations under time constraints. In practice, software development processes

often impose time constraints on regression testing; therefore this approach

can help use limited resources more effectively under such circumstances.

The approach was evaluated by applying several RTS techniques (coverage

based and Bayesian Network based) to five Java applications.

Qu et al. [46] presented a RTS approach for configurable software sys-

tems. The proposed approach selects test cases for the preselected configu-

rations, assuming that there are no changes in source code when testing with

different configurations. The approach has four steps: (1) collect configura-

tion differences between two sets of configurations, (2) analyze the impact of

configuration changes using program slicing and collects functions that are

impacted by the changes, (3) compute the function coverage of test cases,

and (4) select test cases that are affected by the changes. The proposed

approach was evaluated by using an industrial application, ABB1 which

has 129 configurable options distributed among 394 variables. The results

of the study indicate that only 20% of test cases are needed to test the

new configured system.

Another industrial research conducted by Hemmati and Briand [47] pre-

sents a model-based test case selection. This approach computes similarity

measures using triggers and guards on transitions of state models and applies

a genetic algorithm (GA) to select test cases. The test cases are generated

from a state model, and they are abstract tests rather than concrete/execut-

able tests. Because similarity comparisons are completed at the abstract level

(hiding unnecessary information), and the executable test cases are generated

61Recent Advances in Regression Testing Techniques

after selecting abstract tests to be rerun, the cost for test case generation can

be reduced. Several similarity functions were used in order to evaluate the

proposed approach, such as Counting, Hamming, Jaccard, Levenshtein,

Global, and Local, and the best results were compared with common heu-

ristics (random and coverage-based test selection techniques).

3.2 Test Case Prioritization
TCP techniques (eg, [33, 48]) offer an alternative approach to improving

regression testing cost effectiveness. These techniques help engineers reveal

faults early in testing, which allows them to begin debugging earlier than

might otherwise be possible. In this case, entire test suites may still be exe-

cuted, which avoids the potential drawbacks associated with omitting test

cases; achieving greater parallelization of debugging and testing activities

results in cost savings. Alternatively, if testing activities are cut short and test

cases must be omitted, prioritization can improve the chances that important

test cases will be executed. In this case, cost savings related to early fault

detection (by those test cases that are executed) still apply, and additional

benefits accrue from lowering the number of faults that might otherwise

be missed through less appropriate runs of partial test suites.

Depending on the types of information available relating to test cases,

various TCP techniques can be utilized. One type of information concerns

coverage of code elements, and techniques can be distinguished in terms of

the type of code elements used. For example, one technique, total block cov-

erage prioritization, simply sorts the test cases in the order of the number of

blocks they cover. Fig. 3 shows an example that has four test cases and eight

blocks covered by these test cases. In this example, from the original test suite

Coverage-based test case prioritization

t1 t2 t3 t4

1 x x

2 x

3 x

4 x x x

5 x x

6 x

7 x x

8 x

t1, t2, t3, t4

t2, t4, t1, t3

Tests

Original order:

t2, t3, t4, t1

Additional
coverage:

Total coverage:

B
lo

ck
s

Fig. 3 Test case prioritization techniques.

62 H. Do

T, total block coverage prioritization puts t2 first, followed by t3, t4, and t1. The

desired outcome in using such a technique is that the ability to reveal a fault

will correlate with the size of a test’s coverage in the code. From this tech-

nique, the selection of t2 first resulted in t3 adding nothing new to the cov-

erage; t3 covers all the same blocks that t2 did. Therefore, another method is

to pick tests that yield the most coverage of blocks that were previously

uncovered. Additional block coverage prioritization iteratively selects a test case

that yields the greatest block coverage and then adjusts the coverage infor-

mation for the remaining test cases to indicate their coverage of blocks not

yet covered; this process is repeated until all blocks coverable by at least

one test case have been covered. In this example, additional block coverage

prioritization picks t2 first, followed by t4, t1, and t3.

Because of their appealing benefits in practice, such as flexibility to adjust

tests for time and budget constraints, various TCP techniques have been

proposed and studied by many researchers and practitioners [7, 8, 49],

and many empirical studies have shown the effectiveness of TCP [2, 50].

3.2.1 Data Sources and Techniques
Depending on the types of information available, various TCP techniques

can be utilized, but similarly to RTS techniques, the majority of TCP

techniques have used source code information to implement prioritization

techniques. For instance, many researchers utilized code coverage informa-

tion to implement prioritization techniques [48, 49, 51], and recent prior-

itization techniques used other types of code information, such as slices [52],

change history [53], or code modification information, and fault proneness

of code [54].

Beyond code-based information, other types of software artifacts, such as

software requirements and design information, have also been utilized. For

example, Srikanth et al. [55] proposed a TCP approach using several

requirements-related factors, eg, requirements complexity and requirements

volatility, for the early detection of severe faults. Krishnamoorthi and Mary

[56] also proposed a model to prioritize test cases using the requirements

specification to improve the rate of severe fault detection. Arafeen and

Do [57] proposed an approach that clusters requirements based on similar-

ities obtained through a text-mining technique and that prioritizes test cases

using the requirements-tests relationship. In addition to requirements and

design information, some other researchers have used software risk informa-

tion to prioritize test cases in order to exercise test cases on the code areas

with potential risks as early as possible [58, 59].

63Recent Advances in Regression Testing Techniques

Two surveys [5, 7] organized TCP techniques into several classes, and

some of the techniques are summarized as follows (for more detailed descrip-

tions and extended discussions about them, see the two surveys):

• Code coverage-based approach: This approach is the most widely used

and studied TCP approach. Various types of techniques that consider

different code component granularity and greedy algorithms have been

presented and empirically evaluated including statement/block/

function/method/class coverage, branch coverage, MC/DC

(Modified Condition/Decision Coverage), code modification, fault

exposing potential, and hill climbing/genetic algorithms [48, 49, 60–63].
• History-based approach: This approach uses history information about

software artifacts. Kim et al. [51] presented a technique in which infor-

mation from previous regression testing cycles is used to better inform

the selection of a subset of an existing test suite for use on a modified

version of a system. Sherriff et al. [53] utilized change history to gather

change impact information and to prioritize test cases accordingly.

Carlson et al. [64] presented clustering-based techniques that utilize real

fault history information including code coverage.

• Requirements-based approach: This approach uses requirements prop-

erties to prioritize test cases. A few researchers have studied the use of

requirements during software testing. For example, Srikanth et al. [55]

present an approach to prioritizing test cases at the system level using

system requirements, and Srivastava et al. [65] utilized requirements

information including risk factors involving the requirements. Other

researchers presented approaches that consider additional factors, such

as factors related to requirement specification (eg, customer priority,

requirements changes, or requirements similarity) [56, 57].

• Model-based approach: Korel et al. [66] presented prioritization tech-

niques using system models including information collected during

modified model execution. Later, they extended their work to an

approach that prioritizes test cases when modifications do not involve

changes in models but only in source code [67].

• Human-based approach: Some techniques utilize a human expert’s

knowledge to improve TCP techniques. For example, Tonella et al.

[68] presented a TCP technique that utilizes a user’s knowledge using

a machine learning algorithm called Case-Based Ranking. Yoo et al.

[69] used the Analytic Hierarchy Process to improve TCP techniques

by employing expert knowledge, and compared the proposed approach

with the conventional coverage-based TCP technique.

64 H. Do

• Other approaches: Several other techniques can be applied to TCP, such

as interaction [50, 70], probabilistic [54], distribution [71], and cost-

aware [72] techniques.

3.2.2 Evaluation Metrics
Because most TCP techniques proposed to date focus primarily on increas-

ing the rate of fault detection of a prioritized test suite, the rate of fault detec-

tion is frequently used for evaluating TCP techniques. To measure the rate

of fault detection, a metric called APFD (Average Percentage Faults

Detected) has been introduced [48, 49]. This metric measures the weighted

average of the percentage of faults detected over the life of a test suite. APFD

values range from 0 to 100; higher numbers imply faster (better) fault detec-

tion rates. More formally, letT be a test suite containing n test cases, and let F

be a set of m faults revealed by T. Let TFi be the first test case in ordering T
0

of T which reveals fault i. The APFD for test suite T 0 is given by the

equation:

APFD¼ 1�TF1 +TF2 +⋯+TFm

nm
+

1

2n

The APFDmetric assumes that test costs and fault severities are uniform,

but they can vary in practice. APFDc, which is a variation of APFD, accounts

for varying test case and fault costs [73]. This metric allows us to properly

evaluate TCP techniques when faults have different levels of fault severity

and test cases have different execution costs. NAPFD [50] is another varia-

tion of APFD. NAPFD considers cases where the rate of fault detection of

different size test suites or faults is being compared. In addition to these

APFD-based metrics, other metrics have been used. RP (most likely relative

position) measures an average relative position of the first failed test [74], and

CE (Coverage Effectiveness) incorporates the cost and the coverage of each

test case [75]. Furthermore, a few cost models have been used to evaluate

TCP techniques as explained in RTS evaluation metrics.

3.2.3 Recent Advances
Haidry and Miller [76] presented an interesting approach that prioritizes

functional test cases by analyzing structural dependencies among test cases.

The approach reorders test cases based on the complexity of interactions

among test cases to increase the fault detection rate. Their work proposes

techniques that use two different dependency structures: open and closed

dependency structures. For a given dependency between two test cases,

65Recent Advances in Regression Testing Techniques

t1 and t2, an open dependency structure specifies that t1 should be executed

at some point before t2. A closed dependency structure requires that t1

should be executed immediately before t2. Although the system under test

is not constructed as a model, this approach is somewhat model based

because it does not use code coverage information and it does not need

to analyze source code. Instead, this approach constructs dependency struc-

tures from test cases, and prioritizes test cases based on the constructed infor-

mation. One challenge with this approach is to extract test dependencies

because such a task requires a good understanding of the system under test

and its tests. In the empirical study, an independent test engineer extracted

test dependencies. The proposed techniques were evaluated using six appli-

cations comparing to several existing prioritization techniques, such as code

coverage based, greedy, and random techniques.

Another interesting research conducted by Saha et al. [77] applied an

information retrieval approach to TCP. TCP and information retrieval

(IR) manipulate different types of software artifacts. TCP uses test cases

and source code, and IT uses documents written in natural language). Many

documents produced by software engineers are text based, and software

developers tend to use meaningful names for comments or identifier names

when writing code and also use similar terms when writing test cases for the

source code. This means that IR can be utilized in aiding various software

engineering tasks. The proposed approach reduces a TCP problem to an IR

problem. The program difference between two versions is the query, and

the test cases are the document collection. Then, test cases are ranked based

on the similarity score between the program differences and test cases. Saha

et al. built a prototype, REPiR (Regression test Prioritization using infor-

mation Retrieval), and evaluated the proposed approach using eight open

source applications that are from various application domains, by comparing

with several traditional TCP techniques.

A research study conducted by Arafeen andDo [57] investigated the rela-

tionship between test cases and requirements to improve test prioritization.

Similar or related requirements are typically implemented in the same class

or in classes under the same subsystem; therefore test cases associated with a

similar or related set of requirements tend to exercise a similar set of classes.

Additionally, test cases with common properties tend to have similar fault

detection ability. Based on this observation, a TCP technique was proposed

that clusters test cases based on requirement similarities. The approach uses a

text-mining technique that provides a means to cluster relevant require-

ments. The requirements are clustered based on the distribution of words

66 H. Do

that cooccur in the requirements. This process includes three tasks: term

extraction, term-document matrix construction, and k-means clustering.

Test cases that are associated with requirements in each cluster are identified

using the requirement-tests traceability matrix. To prioritize test cases for

each cluster, the technique uses a code complexity metric that was calculated

using Lines of Code, Nested Block Depth, and McCabe Cyclomatic

Complexity. The final step of the approach is to create a set of reordered

test cases. To do so, the clusters are prioritized based on the importance

of requirements, and the final reordered test cases are created by visiting

the prioritized clusters. The approach was evaluated using two Java applica-

tions that provided requirements documents by comparing to traditional

prioritization techniques that do not use requirements and clustering

information.

Staats et al. [78] considered a different class of software artifacts, test ora-

cles, to improve TCP. They proposed an approach that utilizes information

about test oracles to prioritize test cases. The approach captures data flow

information from variable assignments to test oracles from during test

execution, and then prioritizes test cases by using the captured data flow

information. When prioritizing test cases, this approach tries to minimize

the distance from each variable def to a use in an oracle. The approach

was evaluated using three reactive case examples by comparing to two tra-

ditional prioritization techniques (random and additional block coverage).

3.3 Test Suite Minimization
As software evolves over time, the number of test cases can grow rapidly;

therefore the cost for regression testing and test suite maintenance can

become far too costly. Because of the changes in software caused by adding,

deleting, and modifying software components, some old test cases cannot be

applied to a new version of the program any longer (obsolete test cases), or

some test cases produce the same coverage of the program as other test cases

(redundant test cases) [79]. TSM techniques attempt to reduce the size of test

suites by removing these obsolete and redundant test cases. By removing

these test cases, engineers can reduce the costs of exercising, validating,

and managing these test cases over time [80]. While identifying the mini-

mum set of test cases without altering fault detection abilities would be ideal,

the TSM problem is NP-complete [81]; therefore the TSM techniques use

heuristics, which produce the approximate minimum test set. Since this

technique often is referred to as test suite reduction, minimization and

reduction are used interchangeably.

67Recent Advances in Regression Testing Techniques

3.3.1 Data Sources and Techniques
The majority of TSM techniques have primarily used code coverage infor-

mation [79, 82, 83], but other types of information have been utilized,

such as graph representations of the system (eg, state models) and data-flow

information [84–86].
A survey [7] summarized TSM techniques as follows:

• Code coverage-based approach: Harrold et al. [79] presented a technique

that selects a representative set of test cases by eliminating redundant and

obsolete tests from a set of test requirements, which is based on the min-

imum hitting set problem. Chen and Lau [82] presented heuristics for the

set cover problem, known as GE (select all essential tests, and then select

tests from unsatisfied requirements) and GRE (remove redundant tests

first, and then apply GE heuristic). Offutt et al. [83] presented a technique

that reduces the size of a test suite by reordering the test execution

sequences. In addition to these aforementioned techniques, many

other heuristics have been presented and empirically evaluated, such

as heuristics using dynamic information [87, 88], a heuristic that uses

branch coverage and data-flow analysis [89], and logic criterion-based

heuristics [90].

• Model-based approach: Vaysburg et al. [91] presented a technique that

uses Extended Finite State Machine (EFSM) dependence analysis to

reduce test suites that were generated based on requirements. Korel et

al. [92] extended this research by incorporating a technique that iden-

tifies changes in EFSMmodels (added/deleted transitions) automatically.

Anido et al. [93] presented a technique that reduces test cases for embed-

ded systems, in which the systems are represented in Finite State

Machines (FSMs).

• Graph-based approach: Marre and Bertolino [84] presented a technique

that uses spanning sets of entities for a decision-to-decision graph

(ddgraph—a compact version of a regular control flow graph) as a

coverage criterion, and identifies a minimum set of tests based on the

criterion.

3.3.2 Evaluation Metrics
The primary goal of TSM is to reduce the size of the test suite; therefore the

rate of test suite reduction has been used for evaluating TSM techniques.

While the size of the test suite is being reduced, fault detection ability or

code coverage could be lost. Therefore, in addition to measuring the rate

of test suite reduction, fault detection rate or code coverage were used to

68 H. Do

evaluate TSM techniques. Additionally, algorithms for implementing TSM

techniques are more complex than RTS and TCP, so the execution time of

the techniques is often used for evaluation.

3.3.3 Recent Advances
While the purpose of the majority of TSM techniques is trying to find a near

optimum set of reduced test cases, Hao et al. [94] proposed a different

approach, which reduces a test suite by allowing test engineers to set a upper

limit on loss in fault detection capability (on-demand test suite reduction).

By doing this, the approach can control the fault detection capability and can

satisfy strict demands on a degree of loss in fault detection capability. After

setting certain percentage levels for a upper limit on loss in fault detection

capability and a confidence level of the instances where it is applied, the

approach selects a representative subset of tests that satisfies the same test

requirements as an initial test suite and a given demand (a upper limit on loss

in fault detection capability and a confidence level). The proposed approach

constructs a fault-detection-loss table by collecting statistics about losses in

fault detection capability at the statement level considering three confidence

levels (90%, 95%, and 99%). After collecting this information, the approach

models on-demand suite reduction as an Integer Linear Programming prob-

lem with two ILP models that use local and global constraints. Finally,

the approach produces a representative subset by solving the ILP problem.

The approach was evaluated using C and Java programs and compared to a

traditional approach developed by Harrold et al. [79].

Blue et al. [95] investigated an interaction-based test suite minimization

(ITSM) problem in the industrial context. The approach is based on

combinatorial test design (CTD). The CTD approach is effective for various

systems types and testing domains, and it works well when the tested func-

tionality depends on multiple factors. Two requirements of CTD prevent it

from being applied in practice: (1) CTD requires precisely defined restric-

tions between the different parameters. This requirement can be problem-

atic when systems have a large number of parameters, and the relationship

among parameters is complex; (2) The test suite constructed by CTD

requires the implementation of new test cases. While the ITSM approach

is complementary to CTD, it addresses cases to which CTD cannot be

applied because of those requirements. Instead of constructing a new test

suite that satisfies full interaction coverage, ITSM reduces an existing test

suite while preserving the interaction coverage. Also, instead of defining

restrictions between parameters, ITSM selects a subset of the test suite that

69Recent Advances in Regression Testing Techniques

preserves its t-wise value combinations. ITSM was evaluated using two real

world applications: a healthcare system and a legacy computer terminal

interface.

Arlt et al. [96] applied TSM to GUI applications. This approach starts

with generating test sequences by generalizing test generation algorithms

developed from the authors’ previous work. Instead of generating test

sequences by only considering pairs of def-use events, the generalized

algorithm generates all relevant event sequences based on an arbitrary num-

ber of dependent events. The number of event sequences generated using

the generalized algorithm can be large; in order to address the scalability

of the approach, an approach was proposed that uses static analysis based

on program slicing to reduce the number of test cases. The approach iden-

tifies and eliminates redundant event sequences from GUI test suites using

two methods. The first method applies partial order reduction to eliminate

event sequences whose execution ordering of first n-1 does not affect the

final event n. The second method applies causal variable analysis and elim-

inates event sequences that are causal variable redundant. The approach was

evaluated using six open source Java applications.

Gotlieb and Marijan [97] applied a flow network approach to reduce the

size of a test suite. They identified three problem areas of test suite reduction,

and proposed a new approach that uses network maximum flows to address

the existing limitations. The limitations are (1) minimum cardinality test

suite is not guaranteed; (2) the existing techniques offer tradeoffs between

test reduction time and the number of test cases, but not both; and (3) fault

detection capability or code coverage is not preserved. The proposed

approach, FLOWER, is an exact method that finds a minimum number

of test cases covering the same set of requirements as the original test suite.

FLOWER encodes a test suite reduction with a bipartite graph which basi-

cally builds the relationship between test requirements and test cases. Based

on the graph, FLOWER finds the maximum flows, which produce a subset

of a test suite that covers all test requirements, and then a minimum cardi-

nality subset amongmaximum network flows is found. FLOWERwas eval-

uated using 2000 randomly generated test suite reduction problems which

were compared to an Integer Linear Programming approach and a simple

greedy approach.

3.4 Additional Remarks on Regression Testing Techniques
In early empirical studies of regression testing techniques, a set of seven small

programs known as the Siemens programs [98] and a somewhat larger

70 H. Do

program, “space,” from the European space agency were the primary pro-

grams under study (note that the Siemens and space programs have been

made available to other researchers since 1999 and have seen widespread

use). However, the use of these programs in the empirical studies has been

criticized because Siemens and space artifacts present only a small sample of

the total population of programs, versions, tests, and faults. Some researchers

have also criticized that these programs have been overused in the study of

regression testing. The reason that the Siemens and space programs have

been popular as experimental artifacts is mainly because these programs have

been publicly released for a long period of time, and in the early 2000s, no

other shareable software artifacts that were equipped for studies of regression

testing techniques existed. Now, the Software-artifact Infrastructure Repos-

itory (SIR) [99] that was founded in 2004 provides more diverse types and

sizes of software artifacts including automation tools and scripts for

supporting empirical studies with software testing and regression testing.

Recently, more research is focusing on industrial applications and other

open source programs including different types of application domains.

As seen in previous discussions of RTS, TCP, and TSR, early research

focused on coverage-based techniques including the “greedy” and the

“additional greedy” algorithms. Recently, research has branched out to

more diversified and advanced techniques including linear programming,

genetic algorithms, and techniques that utilize various types of data sources

(eg, code complexity, code dependency, test granularity, fault history, and

requirements/design documents). Additionally, more researchers have tried

to improve regression testing techniques by incorporating techniques from

other areas such as, data mining, machine learning, and information

retrieval. It is expected that this trend will continue with growing interests.

4. CONCLUSIONS

This chapter introduced the basic concepts of three widely researched

regression testing techniques (RTS, TCP, and TSM), and discussed various

data sources that the techniques have utilized, different classes of techniques,

and commonly used evaluation metrics for the techniques. This chapter also

presented overall trends of the techniques based on the results from three

recent surveys and summarized the surveys’ findings. Also, recent advances

for each area of regression testing techniques were presented.

To date, research in regression testing area continues to grow in many

ways as presented in this chapter. However, the surveys suggest methods

71Recent Advances in Regression Testing Techniques

for improving regression testing, such as developing more model-based

techniques, developing techniques that can be practically utilized, and per-

forming more rigorous empirical studies with more publicly available exper-

imental artifacts. While there is some evidence that techniques are being

used in practice, it is also noted that there is a gap in technology transfer

to industry industry [1]. In order for regression testing techniques and meth-

odologies to be useful in industry and to be transferred faster into practice,

they must be developed by considering the context factors related to indus-

trial testing environments and evaluated by using the appropriate assessment

methodologies.

REFERENCES
[1] M.J. Harrold, A. Orso, Retesting software during development and maintenance,

in: Proceedings of the International Conference on Software Maintenance: Frontiers
of Software Maintenance, 2008, pp. 88–108.

[2] H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, The effects of time constraints on test
case prioritization: a series of controlled experiments, IEEE Trans. Softw. Eng. 36 (5)
(2010). september.

[3] H.K.N. Leung, L. White, Insights into regression testing, in: Proceedings of the
Conference on Software Maintenance, 1989, pp. 60–69.

[4] G. Rothermel, M.J. Harrold, Analyzing regression test selection techniques, IEEE
Trans. Softw. Eng. 22 (8) (1996) 529–551.

[5] C. Catal, D.Mishra, Test case prioritization: a systematic mapping study, Softw. Qual. J.
21 (2013) 445–478.

[6] E. Engstrom, P. Runeson, M. Skoglund, A systematic review on regression test selec-
tion techniques, Inform. Softw. Technol. 52 (1) (2010) 14–30.

[7] S. Yoo, M. Harman, Regression testing minimisation, selection and prioritisation : a
survey, 22 (2) (March 2012).

[8] A. Srivastava, J. Thiagarajan, Effectively prioritizing tests in development environment,
in: Proceedings of the International Symposium on Software Testing and Analysis,
2002, pp. 97–106.

[9] K. Fischer, A test case selection method for the validation of software maintenance mod-
ifications, in: International Computer Software and Applications Conference, 1977,
pp. 421–426.

[10] G. Rothermel, M.J. Harrold, A framework for evaluating regression test selection tech-
niques, in: Proceedings of the International Conference on Software Engineering, 1994,
pp. 201–210.

[11] Y.F. Chen, D.S. Rosenblum, K.P. Vo, TestTube: a system for selective regression test-
ing, in: Proceedings of the International Conference on Software Engineering, 1994,
pp. 211–220.

[12] M.J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. Spoon,
A. Gujarathi, Regression test selection for Java software, in: Proc. Conf. O.-O.
Programming, Systems, Langs., and Apps., 2001.

[13] G. Rothermel, M.J. Harrold, A safe, efficient regression test selection technique, ACM
Trans. Softw. Eng. Methodol. 6 (2) (1997) 173–210.

[14] F.I. Vokolos, P.G. Frankl, Empirical evaluation of the textual differencing regression
testing technique, in: Proceedings of the International Conference on Software
Maintenance, 1998, pp. 44–53.

72 H. Do

http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0010
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0010
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0010
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0015
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0015
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0015
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0020
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0020
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0025
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0025
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0030
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0030
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0035
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0035
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0040
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0040
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0045
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0045
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0045
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0050
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0050
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0050
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0055
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0055
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0055
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0060
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0060
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0060
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0065
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0065
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0065
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0070
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0070
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0075
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0075
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0075

[15] G. Rothermel, M.J. Harrold, Empirical studies of a safe regression test selection tech-
nique, IEEE Trans. Softw. Eng. 24 (6) (1998) 401–419.

[16] J. Bible, G. Rothermel, D. Rosenblum, A comparative study of coarse- and fine-
grained safe regression test selection techniques, ACM Trans. Softw. Eng. Methodol.
10 (2) (2001) 149–183.

[17] L.C. Briand, Y. Labiche, G. Soccar, Automating impact analysis and regression test
selection based on UML design, in: Proceedings of the International Conference on
Software Maintenance, 2002, pp. 252–261.

[18] A. Orso, H. Do, G. Rothermel, M.J. Harrold, D. Rosenblum, Using component meta-
data to regression test component-based software, J. Softw. Test. Verif. Reliab. 17 (2)
(2007) 61–94.

[19] A. von Mayrhauser, N. Zhang, Automated regression testing using DBT and Sleuth,
J. Softw. Mainten. 11 (2) (1999) 93–116.

[20] H.K.N. Leung, L.J. White, A study of integration testing and software regression at the
integration level, in: Proceedings of the Conference on Software Maintenance, 1990,
pp. 290–300.

[21] D. Kung, J. Gao, P. Hsia, J. Lin, Y. Toyoshima, Class firewall, test order, and regression
testing of object-oriented programs, J. object-oriented programm. 8 (2) (1995) 51–65.

[22] L.White, K. Jaber, B. Robinson, V. Rajlich, Extended firewall for regression testing: an
experience report, J. Softw. Mainten. Evol. 20 (6) (2008) 419–433.

[23] L.White,H.Almezen, S.Sastry, Firewall regression testingof gui sequences and their inter-
actions, in: IEEE International Conference on SoftwareMaintenance, 2003, pp. 398–409.

[24] J. Zheng, B. Robinson, L. Williams, K. Smiley, Applying regression test selection for
COTS-based applications, in: International Conference on Software Engineering,
2006, pp. 512–522.

[25] M. Skoglund Mi, P. Runeson, A case study of the class firewall regression test selection
technique on a large scale distributed software system, in: International Symposium on
Empirical Software Engineering and Measurement, 2005, pp. 74–83.

[26] G. Rothermel, M.J. Harrold, J. Dedhia, Regression test selection for C++ programs,
J. Softw. Test. Verif. Reliab. 10 (2) (2000) 77–109.

[27] G. Xu, A. Rountev, Regression test selection for AspectJ software, in: International
Conference on Software Engineering, 2007, pp. 65–74.

[28] E. Martins, V. Vieira, Regression test selection for testable classes, in: Lecture Notes in
Computer Science: Dependable Computing–EDCC, 2005, pp. 453–470.

[29] Y. Chen, R.L. Probert, D.P. Sims, Specification-based regression test selection with risk
analysis, in: Proceedings of the 2002 Conference of the Centre for Advanced Studies on
Collaborative research, 2002.

[30] M. Ruth, S. Tu, A safe regression test selection technique for web services,
in: International Conference on Internet and Web Applications and Services, 2007,
pp. 47–52.

[31] M.J. Harrold, M.L. Soffa, An incremental approach to unit testing during maintenance,
in: Proceedings of the Conference on Software Maintenance, 1988, pp. 362–367.

[32] R. Gupta, M.J. Harrold, M.L. Soffa, An approach to regression testing using slicing,
in: Proceedings of the Conference on Software Maintenance, 1992, pp. 299–308.

[33] W.E. Wong, J.R. Horgan, S. London, H. Agrawal, A study of effective regression test-
ing in practice, in: Proceedings of the International Symposium on Software Reliability
Engineering, 1997, pp. 230–238.

[34] L.C. Briand, Y. Labiche, S. He, Automating regression test selection based on UML
designs, Inform. Softw. Technol. 51 (2009) 16–30.

[35] Q. Farooq, M. Iqbal, Z. Malik, A. Nadeem, An approach for selective state machine
based regression testing, in: International Workshop on Advances in Model-based
Testing, 2007, pp. 44–52.

73Recent Advances in Regression Testing Techniques

http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0080
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0080
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0085
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0085
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0085
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0090
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0090
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0090
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0095
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0095
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0095
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0100
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0100
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0105
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0105
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0105
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0110
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0110
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0115
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0115
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0120
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0120
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0125
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0125
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0125
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0130
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0130
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0130
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0135
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0135
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0140
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0140
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0145
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0145
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0150
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0150
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0150
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0155
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0155
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0155
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0160
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0160
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0165
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0165
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0170
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0170
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0170
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0175
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0175
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0180
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0180
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0180

[36] Y. Le Traon, T. Jeron, J. Jezequel, P. Morel, Efficient object-oriented integration and
regression testing, IEEE Trans. Reliab. 49 (1) (2000) 12–25.

[37] Y. Wu, J. Offutt, Maintaining evolving component-based software with UML,
in: European Conference on Software Maintenance and Reengineering, 2003,
pp. 133–142.

[38] S. Yau, Z. Kishimoto, Amethod for revalidating modified programs in the maintenance
phase, in: COMPSAC ’87: The Eleventh Annual International Computer Software and
Applications Conference, 1987, pp. 272–277.

[39] H. Agrawal, J. Horgan, E. Krauser, S. London, Incremental regression testing,
in: Proceedings of the Conference on Software Maintenance, 1993, pp. 348–357.

[40] S. Bates, S. Horwitz, Incremental program testing using program dependence graphs,
in: Proceedings of the 20th ACMSymposium on Principles of Programming Languages,
1993, pp. 384–396.

[41] H.K.N. Leung, L.J. White, A cost model to compare regression test strategies,
in: Proceedings of the Conference on Software Maintenance, 1991.

[42] A. Malishevsky, G. Rothermel, S. Elbaum, Modeling the cost-benefits tradeoffs for
regression testing techniques, in: IEEE International Conference on Software Mainte-
nance, 2002, pp. 204–213.

[43] H. Do, G. Rothermel, An empirical study of regression testing techniques incorporating
context and lifecycle factors and improved cost-benefit models, in: Proceedings of the
ACM SIGSOFT Symposium on Foundations of Software Engineering, 2006.

[44] M. Kim, J. Cobb, M.J. Harrold, T. Kurc, A. Orso, J. Saltz, A. Post, K. Malhotra,
S. Navathe, Efficient regression testing of ontology-driven systems, in: International
Symposium on Software Testing and Analysis, 2012, pp. 320–330.

[45] S. Mirarab, S. Akhlaghi, L. Tahvildari, Size-constrained regression test case
selection using multicriteria optimization, IEEE Trans. Softw. Eng. 38 (4) (2012)
936–956.

[46] X. Qu, M. Acharya, B. Robinson, Impact analysis of configuration changes for test case
selection, in: International Symposium on Software Reliability Engineering, 2011,
pp. 140–149.

[47] H. Hemmati, L. Briand, An industrial investigation of similarity measures for model-
based test case selection, in: International Symposium on Software Reliability Engineer-
ing, 2010, pp. 141–150.

[48] G. Rothermel, R. Untch, C. Chu, M.J. Harrold, Prioritizing test cases for regression
testing, IEEE Trans. Softw. Eng. 27 (10) (2001) 929–948.

[49] S. Elbaum, A.G. Malishevsky, G. Rothermel, Test case prioritization: a family of
empirical studies, IEEE Trans. Softw. Eng. 28 (2) (2002) 159–182.

[50] X. Qu, M. Cohen, G. Rothermel, Configuration-aware regression testing: an empirical
study of sampling and prioritization, in: Proceedings of the International Conference on
Software Testing and Analysis, 2008, pp. 75–86.

[51] J. Kim, A. Porter, A history-based test prioritization technique for regression testing in
resource constrained environments, in: Proceedings of the International Conference on
Software Engineering, 2002.

[52] D. Jeffrey, N. Gupta, Test case prioritization using relevant slices, in: Int’l Comp. Soft.
Appl. Conf., 2006, pp. 411–420.

[53] M. Sherriff, M. Lake, L. Williams, Prioritization of regression tests using singular value
decomposition with empirical change records, in: Proceedings of the International
Symposium on Software Reliability Engineering, 2007, pp. 81–90.

[54] S. Mirarab, L. Tahvildari, A prioritization approach for software test cases on Baysian
Networks, in: Found. A,pp. Softw. Eng., 2007, pp. 276–290.

74 H. Do

http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0185
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0185
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0190
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0190
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0190
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0195
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0195
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0195
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0200
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0200
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0205
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0205
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0205
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0210
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0210
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0215
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0215
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0215
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0220
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0220
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0220
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0225
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0225
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0225
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0230
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0230
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0230
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0235
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0235
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0235
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0240
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0240
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0240
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0245
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0245
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0250
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0250
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0255
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0255
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0255
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0260
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0260
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0260
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0265
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0265
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0270
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0270
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0270
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0275
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0275

[55] H. Srikanth, L. Williams, J. Osborne, System test case prioritization of new and regres-
sion test cases, in: Proceedings of the International Symposium on Empirical Software
Engineering, 2005, pp. 64–73.

[56] R. Krishnamoorthi, S.A. Sahaaya, M. Arul, Factor oriented requirement coverage based
system test case prioritization of new and regression test cases, Inform. Softw. Technol.
51 (4) (2009) 799–808.

[57] M. Arafeen, H. Do, Test case prioritization using requirements-based clustering,
in: International Conference on Software Testing, Verification and Validation, 2013,
pp. 312–321.

[58] H. Stallbaum, A.Metzger, K. Pohl, An Automated Technique for Risk-based Test Case
Generation and Prioritization, in: Proceedings of the 3rd International Workshop on
Automation of Software Test, 2008, pp. 67–70.

[59] C.S. Hettiarachchi, H. Do, B. Choi, Effective regression testing using requirements and
risks, in: Eighth International Conference on Software Security and Reliability, 2014,
pp. 157–166.

[60] J. Jones, M.J. Harrold, Test suite reduction and prioritization for modified condition/
decision coverage, IEEE Trans. Softw. Eng. 29 (3) (2003) 193–209.

[61] H. Do, G. Rothermel, A. Kinneer, Prioritizing JUnit test cases: an empirical assessment
and cost-benefits analysis, Empir. Softw. Eng. Int. J. 11 (1) (2006) 33–70.

[62] Z. Li, M. Harman, R. Hierons, Search algorithms for regression test case prioritization,
IEEE Trans. Softw. Eng. 33 (4) (2007) 225–237.

[63] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Test case prioritization: an empir-
ical study, in: Int’l. Conf. Softw. Maint., 1999, pp. 179–188.

[64] R. Carlson, H. Do, A. Denton, A clustering approach to improving test case prioriti-
zation: an industrial case study, in: IEEE International Conference on Software Main-
tenance, 2011, pp. 382–391.

[65] P. Srivastava, K. Kumar, G. Raghurama, Test case prioritization based on requirements
and risk factors, Softw. Eng. Notes 33 (4) (2008) 1–5.

[66] B. Korel, L. Tahat, M.Harman, Test prioritization using systemmodels, in: Proceedings
of the International Conference on Software Maintenance, 2005, pp. 559–568.

[67] B. Korel, G. Koutsogiannakis, L. Tahat, Application of system models in regression
test suite prioritization, in: Proceedings of the International Conference on Software
Maintenance, 2008, pp. 247–256.

[68] P. Tonella, P. Avesani, A. Susi, Using the case-based ranking methodology for test case
prioritization, in: IEEE International Conference on Software Maintenance, IEEE,
2006, pp. 123–133.

[69] S. Yoo, M. Harman, P. Tonella, A. Susi, Clustering test cases to achieve effective and
scalable prioritisation incorporating expert knowledge, in: Proceedings of the Interna-
tional Conference on Software Testing and Analysis, 2009, pp. 201–212.

[70] R. Bryce, C. Colbourn, Prioritized interaction testing for pair-wise coverage with
seeding and constraints, J. Inform. Softw. Technol. 48 (10) (2006) 960–970.

[71] D. Leon, A. Podgurski, A comparison of coverage-based and distribution-based
techniques for filtering and prioritizing test cases, in: Proceedings of the International
Symposium on Software Reliability Engineering, 2003, pp. 442–453.

[72] A. Walcott, M.L. Soffa, G.M. Kapfhammer, R.S. Roos, Time-aware test suite prior-
itization, in: Proceedings of the International Conference on Software Testing and
Analysis, 2006, pp. 1–12.

[73] S. Elbaum, A. Malishevsky, G. Rothermel, Incorporating varying test costs and fault
severities into test case prioritization, in: Proceedings of the 23rd International Confer-
ence on Software Engineering, IEEE Computer Society, 2001, pp. 329–338.

75Recent Advances in Regression Testing Techniques

http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0280
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0280
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0280
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0285
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0285
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0285
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0290
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0290
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0290
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0295
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0295
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0295
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0300
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0300
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0300
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0305
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0305
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0310
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0310
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0315
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0315
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0320
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0320
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0325
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0325
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0325
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0330
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0330
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0335
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0335
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0340
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0340
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0340
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0345
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0345
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0345
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0350
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0350
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0350
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0355
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0355
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0360
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0360
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0360
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0365
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0365
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0365
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0370
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0370
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0370

[74] B. Korel, G. Koutsogiannakis, Experimental comparison of code-based and model-
based test prioritization, in: IEEE International Conference on Software Testing
Verification and Validation Workshop, 2009, pp. 77–84.

[75] G. Kapfhammer, M.L. Soffa, Using coverage effectiveness to evaluate test suite prior-
itizations, in: InternationalWorkshop on Empirical Assessment of Software Engineering
Languages and Technologies, 2007, pp. 19–20.

[76] S. Haidry, T. Miller, Using dependency structures for prioritization of functional test
suites, IEEE Trans. Softw. Eng. 39 (2) (2013) 258–275.

[77] R. Saha, L. Zhang, S. Khurshid, D. Perry, An information retrieval approach for regres-
sion test prioritization based on program changes, in: International Conference on
Software Engineering, 2015, pp. 268–279.

[78] M. Staats, P. Loyola, G. Rothermel, Oracle-centric test case prioritization,
in: International Symposium on Software Reliability Engineering, 2012, pp. 311–320.

[79] M.J. Harrold, R. Gupta, M.L. Soffa, A methodology for controlling the size of a test
suite, ACM Trans. Softw. Eng. Methodol. 2 (3) (1993) 270–285.

[80] G. Rothermel, M.J. Harrold, J. Ostrin, C. Hong, An empirical study of the effects of
minimization on the fault detection capabilities of test suites, in: Proceedings of the
International Conference on Software Maintenance, 1998, pp. 34–43.

[81] M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman, New York,
1979.

[82] T.Y. Chen, M.F. Lau, Dividing strategies for the optimization of a test suite, Inform
Process. Lett. 60 (3) (1996) 135–141.

[83] J. Pan J. Offutt, J.M. Voas, Procedures for reducing the size of coverage-based test sets,
in: Proc. Int’l. Conf. Testing Comp. Softw., 1995, pp. 111–123.

[84] M. Marre, A. Bertolino, Using spanning sets for coverage testing, IEEE Trans. Softw.
Eng. 29 (11) (2003) 974–984.

[85] J.R. Horgan, S.A. London, ATAC: a data flow coverage testing tool for C,
in: Proceedings of the Symp. on Assessment of Quality Software Dev. Tools, 1992,
pp. 2–10.

[86] P. Schroeder, B. Korel, Black-box test reduction using input-output analysis,
in: International Symposium on Software Testing and Analysis, 2000, pp. 173–177.

[87] M. Harder, J. Mellen, M. Ernst, Improving test suites via operational abstraction,
in: Proc. 25rd International Conference on Software Eng., 2003, pp. 60–71.

[88] S. McMaster, A. Memon, Call-stack coverage for gui test suite reduction, IEEE Trans.
Softw. Eng. 34 (1) (2008) 99–115.

[89] D. Jeffrey, N. Gupta, Test suite reduction with selective redundancy, in: IEEE Inter-
national Conference on Software Maintenance, 2005, pp. 549–558.

[90] G. Kaminski, P. Ammann, Using logic criterion feasibility to reduce test set size while
guaranteeing fault detection, in: International Conference on Software Testing,
Verification and Validation, 2009, pp. 356–365.

[91] B. Vaysburg, L. Tahat, B. Korel, Dependence analysis in reduction of requirement based
test suites, in: International Symposium on Software Testing and Analysis, 2002,
pp. 107–111.

[92] B. Korel, L.H. Tahat, B. Vaysburg, Model based regression test reduction using depen-
dence analysis, in: International Conference on Software Maintenance, 2002,
pp. 214–223.

[93] R. Anido, A. Cavalli, L. Lima, N. Yevtushenko, Test suite minimization for testing in
context, J. Softw. Test. Verif. Reliab. 13 (3) (2003) 141–155.

[94] D. Hao, L. Zhang, X. Wu, H. Mei, G. Rothermel, On-demand test suite reduction,
in: International Conference on Software Engineering, 2012, pp. 738–748.

[95] D. Blue, I. Segall, R. Tzoref-Brill, A. Zlotnick, Interaction-based test-suite minimiza-
tion, in: International Conference on Software Engineering, 2013, pp. 182–191.

76 H. Do

http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0375
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0375
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0375
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0380
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0380
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0380
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0385
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0385
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0390
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0390
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0390
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0395
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0395
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0400
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0400
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0405
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0405
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0405
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0410
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0410
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0415
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0415
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0420
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0420
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0425
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0425
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0430
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0430
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0430
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0435
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0435
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0440
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0440
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0445
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0445
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0450
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0450
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0455
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0455
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0455
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0460
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0460
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0460
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0465
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0465
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0465
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0470
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0470
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0475
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0475
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0480
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0480

[96] S. Arlt, A. Podelski, M. Wehrle, Reducing gui test suites via program slicing,
in: International Symposium on Software Testing and Analysis, 2014, pp. 270–281.

[97] A. Gotlieb, D. Marijan, Flower: optimal test suite reduction as a network maximum
flow, in: International Symposium on Software Testing and Analysis, 2014,
pp. 171–180.

[98] M. Hutchins, H. Foster, T. Goradia, T. Ostrand, Experiments on the effectiveness of
dataflow- and controlflow-based test adequacy criteria, in: Proc. Int’l. Conf. Softw.
Eng., 1994, pp. 191–200.

[99] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with testing
techniques: an infrastructure and its potential impact, Int. J. Emp. Softw. Eng. 10 (4)
(2005) 405–435.

ABOUT THE AUTHOR

Hyunsook Do is an associate professor in

the Department of Computer Science and

Engineering at University of North Texas

in United States. She received the Ph.D. in

Computer Science from University of

Nebraska-Lincoln, the M.S. in Computer

Science from Tokyo Institute of Technology

in Japan, and a B.S. in Computer Science

from Sungshin Women’s University in

South Korea. Her research interests lie in

software engineering, particularly software

testing and empirical methodologies.

77Recent Advances in Regression Testing Techniques

http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0485
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0485
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0490
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0490
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0490
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0495
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0495
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0495
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0500
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0500
http://refhub.elsevier.com/S0065-2458(16)30028-6/rf0500

This page intentionally left blank

CHAPTER FOUR

Coverage-Based Software Testing:
Beyond Basic Test Requirements
W. Masri, F.A. Zaraket
American University of Beirut, Beirut, Lebanon

Contents

1. Introduction 80
2. Definitions 81
3. Early Techniques: Basic Coverage Criteria 82

3.1 Function Coverage and Function-Pair Coverage 83
3.2 Statement Coverage and Basic Block Coverage 83
3.3 Branch Coverage 84
3.4 Basic Logic Coverage 84

4. Early Techniques: Advanced Coverage Criteria 85
4.1 Def-Use Pair Coverage 85
4.2 Active Clause Coverage 87

5. Early Techniques: Profiling for Basic Coverage 89
5.1 Profiling Structural Elements 90
5.2 Profiling Logic Elements 91

6. Efficient Profiling for Path Coverage 92
6.1 Assigning Values to Edges 93
6.2 Selecting Edges for Instrumentation 95
6.3 Regenerating a Path from Its Value 96
6.4 Dealing with Loops 97

7. Test Case Generation for Path Coverage 98
7.1 Static Symbolic Execution 99
7.2 Dynamic Symbolic Execution 101

8. Test Suite Minimization: Covering Complex tr's 103
8.1 Coverage-Based Test Suite Minimization 103
8.2 Covering Complex Program Elements 104
8.3 Motivating Example 106
8.4 Empirical Study 110

9. Test Suite Minimization: Covering Combinations of Basic tr's 118
9.1 Test Suite Minimization 118
9.2 Genetic Algorithm 119
9.3 Experimental Work 121

Advances in Computers, Volume 103 # 2016 Elsevier Inc.
ISSN 0065-2458 All rights reserved.
http://dx.doi.org/10.1016/bs.adcom.2016.04.003

79

http://dx.doi.org/10.1016/bs.adcom.2016.04.003

10. PBCOV: Property-Based Coverage Criterion 124
10.1 Motivating Example 124
10.2 PBCOV Design and Implementation 127
10.3 Experimental Results 128

11. UCov: User-Defined Coverage Criterion 130
11.1 Definitions and Notation 132
11.2 Motivation 134

12. Conclusion 139
References 140
About the Authors 142

Abstract

Code coverage is one of the core quality metrics adopted by software testing practi-
tioners nowadays. Researchers have devised several coverage criteria that testers use
to assess the quality of test suites. A coverage criterion operates by: (1) defining a set
of test requirements that need to be satisfied by the given test suite and (2) computing
the percentage of the satisfied requirements, thus yielding a quality metric that
quantifies the potential adequacy of the test suite at revealing program defects. What
differentiates one coverage criterion from another is the set of test requirements
involved. For example, function coverage is concerned with whether every function
in the program has been called, and statement coverage is concerned with whether
every statement in the program has executed.

The use of code coverage in testing is not restricted to assessing the quality of test
suites. For example, researchers have devised test suite minimization and test case gen-
eration techniques that also leverage coverage.

Early coverage-based software testing techniques involved basic test requirements
such as functions, statements, branches, and predicates, whereas recent techniques
involved (1) test requirements that are complex code constructs such as paths, program
dependences, and information flows or (2) test requirements that are not necessarily
code constructs such as program properties and user-defined test requirements. The
focus of this chapter is to compare these two generations of techniques in regard to
their effectiveness at revealing defects. The chapter will first present preliminary back-
ground and definitions and then describe impactful early coverage techniques followed
by selected recent work.

1. INTRODUCTION

For most software programs, the number of potential test cases exercis-

ing different program behaviors is practically infinite, whichmakes exhaustive

testing infeasible. Alternatively, the testing community believes that effective

use of coverage criteria provides informal assurance that the software program

is reliable, ie, contains no defects. That is, coverage criteria provide practical

rules for how to select tests and when to stop testing [1].

80 W. Masri and F.A. Zaraket

Researchers devised coverage criteria that testers use to assess the quality

of test suites. A coverage criterion operates by: (1) defining a set of test require-

ments that need to be satisfied by the given test suite; and (2) computing the

percentage of the satisfied requirements, thus yielding a quality metric that

quantifies the potential adequacy of the test suite at revealing program

defects. What differentiates one coverage criterion from another is the set

of test requirements involved. For example, function coverage is concerned

with whether every function in the program has been called, and statement

coverage is concerned with whether every statement in the program has

executed.

Primarily, testers leverage coverage criteria and configure their coverage

requirements to maintain test suites for the purpose of: (1) fully exercising

the intended functionality of the system under test (ie, validation testing);

(2) guarding against previously detected defects (ie, regression testing);

and (3) increasing the likelihood of detecting undiscovered defects (defect

testing).

The use of coverage in testing is not restricted to assessing the quality of

test suites. As described in later sections, researchers devised test case gener-

ation and test suite minimization techniques that leverage coverage.

This chapter is organized as follows. Section 2 provides definitions rel-

evant to coverage-based software testing. Sections 3–5, respectively,

describe early work involving basic coverage criteria, advanced coverage

criteria, and profiling for basic coverage. Sections 6–12 present more recent

work as follows: (a) Section 6 describes an approach for efficient path

profiling; (b) Section 7 describes test case generation techniques for

path coverage; (c) advanced coverage-based test suite minimization tech-

niques are described in Sections 8 and 9; (d) Section 10 describes PBCOV,

a property-based coverage criterion; and (e) Section 11 describes UCov, a

user-defined coverage criterion for test case intent verification. Finally,

Section 12 concludes.

2. DEFINITIONS

This section provides definitions for entities relevant to the concepts

of testing and code coverage. When appropriate, terminology used in Refs.

[1,2] will be adopted hereafter.

Definition—Program element: A program element (pe) is a programming

unit such as a statement, a branch, a def-use pair, or a predicate. Program

elements, which could vary considerably in terms of their complexity,

81Coverage-Based Software Testing

are typically derived from control flow, data flow, or logic program

constructs.

Definition—Program, test case, and test suite: A program (P) is a list of

statements whose execution describes a set of intended behaviors.

A program typically has a set of inputs (I) and its execution on one of the

inputs P(i), where i 2 I defines a program behavior. A test case t defines

an input of the program and relates it to an expected intended behavior

(as determined by an oracle). A failure occurs when the behavior of a program

on a test case does not match the expected behavior. A test suite T is a set of

test cases.

Definition—Test requirement: A test requirement (tr) is a program element

that a test case must satisfy or cover. A set of test requirements are denoted as

TR.

Definition—Coverage criterion: A coverage criterion (C) is a rule that

imposes test requirements TR on a test suite T and a program P. That is,

T satisfies C if and only if every test requirement in TR is covered by the

execution of P over at least one test case in T.

Definition—Coverage level: Given a set of test requirements TR

associated with coverage criterion C, a test suite T, and a program P,

the coverage level is the ratio of the number of test requirements covered

by T to the size of TR. Note that the coverage level should be at 100%

for T to satisfy C.

Definition—Criteria subsumption: A coverage criterion C1 subsumes

C2 if and only if every test suite that satisfies C1 also satisfies C2. Bear in

mind that it is customary to compare coverage criteria in terms of their sub-

sumption relations, and it is generally harder to satisfy C1 than C2, if C1

subsumes C2.

3. EARLY TECHNIQUES: BASIC COVERAGE CRITERIA

Coverage criteria aim at assessing test suite quality. The discussion in

this section will be limited to early coverage criteria which require basic pro-

gram elements to be covered, or equivalently, basic test requirements to be

satisfied. We consider a program element to be basic if it is simple in regard to

syntax. While acknowledging that the following is a subjective categoriza-

tion, we consider the following program elements to be basic: functions,

function pairs, statements (or basic blocks), branches, predicates, and clauses

(ie, predicates with no logical operators).

82 W. Masri and F.A. Zaraket

3.1 Function Coverage and Function-Pair Coverage
A static call graph captures the potential calling relationships between func-

tions in a program. In such a graph, a node represents a function and an edge

foo! bar indicates that function foomight call function bar during execution.

The function coverage criterion defines TR to include all the nodes in the

static call graph. Thus, for test suite T to satisfy function coverage, T should

execute every function in the program at least once.

The function-pair coverage criterion definesTR to include all the edges in the

static call graph. Therefore, for T to satisfy function-pair coverage, T should

induce every potential function invocation in the program at least once.

It isworthmentioning that theexact static call graph is anundecidableprob-

lem. This is basically because the computable static call graphsmay contain call

pairs thatmightneveroccur in actual executionsof theprogram.Therefore, the

call graphs used when computing the metrics for function-pair coverage are

actually over-approximations, thus yielding potentially inaccurate values.

3.2 Statement Coverage and Basic Block Coverage
Control flow is a relation that describes the possible flow of execution in a

program. A control flow graph (CFG) is a directed graph in which each node

represents a statement and each edge represents the flow of control between

statements within a function. That is, a CFG captures all paths that might be

traversed during the execution of a function. A SystemCFG combines all the

CFGs of a program by adding an edge to represent each function invocation.

The statement coverage criterion defines TR to include all the nodes in the

SystemCFG. Thus, for T to satisfy statement coverage, T should execute every

statement in the program at least once.

A basic block is a sequence of consecutive statements in which the flow of

control enters at the beginning and leaves at the end without halt or possi-

bility of branching except at the end. CFGs and SystemCFGs are typically

built based on basic blocks as opposed to statements. This is widely practiced

because the resulting CFGs would be more compact (allowing for more effi-

cient analyses), meanwhile preserving the same control flow information.

Consequently, many testers choose to adopt basic block coverage as opposed

to statement coverage.

Keep in mind that if a test suite T exhibits a coverage level of 100% for

statement coverage, it will also exhibit 100% for basic block coverage (and

vice versa). However, if the coverage level was less than 100% for statement

coverage, say 90%, it will not necessarily be 90% for basic block coverage

(and vice versa).

83Coverage-Based Software Testing

3.3 Branch Coverage
The branch coverage criterion definesTR to include all the branches (edges orig-

inating from decision nodes) in all the CFGs of the functions in the subject

program. Thus, for T to satisfy branch coverage, T should exercise each branch

of each control structure. For example, given an if statement, the body of the

if should be executed in at least one instance and skipped in at least one other

instance. Given an if-else, the body of the if should be executed in at least one

instance and the body of the else executed in at least one other instance. And

given a loop, it should iterate one or more times in at least one instance and

zero times in at least one other instance.

3.4 Basic Logic Coverage
This section introduces the three basic logic coverage criteria, ie, predicate cover-

age, clause coverage, and combinatorial coverage. In the context of a conditional

program statement, a predicate is a Boolean expression whose outcome

decides which branch the execution path will follow. For example, given

the snippet of Java code below:

if ((x != 1) jj (x > y)) {

s1:...

} else {

s2:...

}

The Boolean outcome of predicate ((x !¼ 1) jj (x > y)) will deter-

mine whether s1 or s2 will execute. A predicate is composed of one or

more clauses separated by logical operators (and, or, not), where a clause is

a Boolean expression with no logical operators but possibly relational

operators (>, <, !¼, etc.). In the above example the predicate is com-

posed of the two clauses (x !¼ 1) and (x > y) separated by the logical

operator “jj.”
The predicate coverage criterion defines TR to include all the predicates p in

the program, and for each p to evaluate to true and false, at least once.

The clause coverage criterion defines TR to include all the clauses c in the

program, and for each c to evaluate to true and false, at least once.

Neither of predicate coverage or clause coverage subsumes the other.

For example, considering our example and the test cases in the table below,

test suite T1¼{t1, t2} satisfies predicate coverage but not clause coverage,

and test suite T2¼{t2, t3} satisfies clause coverage but not predicate

coverage.

84 W. Masri and F.A. Zaraket

Test Case(x, y) (x !5 1) (x > y) ((x !5 1) || (x > y))

t1(1, 1) F F F

t2(1, 0) F T T

t3(2, 3) T F T

t4(2, 1) T T T

Test suite T3¼{t1, t4} satisfies predicate coverage and clause coverage.

However, it is not very effective at covering the various behaviors of the

program since both clauses take on the same values in each of t1 and t4.

Clearly, testing the program with all four test cases, ie, inducing all combi-

nations of the clauses, would better cover the various program behaviors.

This is what combinatorial coverage calls for.

The combinatorial coverage criterion requires that the clauses for each pred-

icate in the program evaluate to each possible combination of truth values.

Not only combinatorial coverage subsumes predicate coverage and clause

coverage, but it is also considered to be the most effective among logic cov-

erage criteria. However, it is difficult and costly to satisfy when the number

of clauses n in a given predicate p exceeds 4 or 5, since 2n test cases need to be

generated just to satisfy the metric for p.

4. EARLY TECHNIQUES: ADVANCED COVERAGE
CRITERIA

Here we present early and advanced coverage criteria, namely, def-use

pair coverage and active clause coverage. The latter provides the basis for

compliance of safety critical avionics software in commercial aircraft as set

by the US Federal Aviation Administration (FAA).

4.1 Def-Use Pair Coverage
A statement is data dependent on another statement if the latter defines a

memory location and the former uses it. Modeling data dependences

between statements requires associating two sets of variables with each state-

ment: the set of variablesD(s) defined (ie, assigned a value) at s, and the set of

variables U(s) used (ie, referenced) at s.

85Coverage-Based Software Testing

Definition—Let s1 and s2 be two statements in a program. s2 is data depen-

dent on s1, if and only if there is a sequence of statements S connecting s1 to s2
such that:

D s1ð Þ\U s2ð Þð Þ�D Sð Þ 6¼ 0

That is, s1 defines a variable used at s2, and there exists a path (in the

SystemCFG) from s1 to s2 in which that variable is not redefined (killed),

ie, there exists a def-clear path from s1 to s2.

Definition—A definition-use pair or DU pair is a triple hv, d, ui, where d is
a definition of v, u is a use of v, and there is at least a def-clear path from d to u.

Researchers have recognized three main variations of definition-use

pair coverage, namely, all-defs coverage, all-uses coverage, and all-du-paths

coverage.

The all-defs coverage requires that each definition reaches at least one use. The

all-uses coverage requires that each definition reaches all possible uses. The all-

du-paths coverage requires that each definition reaches all possible uses

through all possible def-clear paths. These three variations are illustrated

in Fig. 1. The snippet of code in Fig. 1A involves one definition of variable

x at statement s0 and two uses at s3 and s4. A single test case that induces

executing trace hs0, s2, s4i suffices to satisfy all-defs coverage since it only

requires that each definition reaches one use. And given that all-uses cov-

erage is satisfied by having each definition reaching all possible uses, the

two test cases inducing executing traces hs0, s2, s3i and hs0, s2, s4i would

s0: x = ...;
if (...) {

s1: ...
}
else {

s2: ...
}
if (...) {

s3: f(x);
}
else {

s4: g(x);
}

x is defined at s0 and used at
s3 and s4

All-defs:
<s0, s2, s4>

All-uses:
<s0, s2, s3>
<s0, s2, s4>

All-du-paths:
<s0, s2, s3>
<s0, s1, s3>
<s0, s2, s4>
<s0, s1, s4>

Possible test execution traces needed to
satisfy each of the three criteria

A B

Fig. 1 Example illustrating the three def-use coverage criteria.

86 W. Masri and F.A. Zaraket

satisfy this coverage criterion. Finally, all-du-paths coverage requires four

test cases since all four def-clear paths from s0 to s3 and s4 need to be

executed.

Fig. 2 shows the subsumption hierarchy between the structural coverage

criteria presented so far. It also includes path coverage and acyclic path coverage

which will be discussed later in the chapter. The figure shows that (1) all-du-

paths coverage subsumes all-uses coverage, which subsumes all-defs cover-

age and branch coverage; (2) branch coverage subsumes statement coverage,

which in turn subsumes function coverage; and (3) function-pair coverage

subsumes function coverage. It goes without saying that the subsumption

relation is transitive; eg, branch coverage subsumes function coverage and

all-du-paths subsumes statement coverage.

Finally, it is important to mention that def-use coverage is complicated

by the fact the test requirements cannot be easily and accurately determined.

This task involves using static analysis to identify for each definition: (1) all its

potential uses in the SystemCFG; and (2) all the def-clear paths reaching each

of its uses. Thus requiring the forward traversal of the SystemCFG multiple

times starting from each definition. The resulting TR is a safe solution (ie, it

contains all potential def-use pairs and associated def-clear paths) but might

include unsatisfiable test requirements since some of the identified def-clear

paths might not be feasible.

4.2 Active Clause Coverage
As stated earlier in Section 3.4, combinatorial coverage is costly and hard to

satisfy due to the large number of test cases that need to be generated for each

Fig. 2 Structural coverage criteria subsumption.

87Coverage-Based Software Testing

predicate with n clauses. Testing researchers have proposed numerous

approaches to reduce that number from 2n to something more manageable.

The most accepted of which is active clause coverage, described next.

The idea behind active clause coverage is to test each clause c in a predicate p

independently from the other clauses in p by verifying whether c affects the

outcome of p; specifically, to verify whether c is the determining factor in the

value of p. Informally, if the value of c is flipped and the value of p changes,

we say that “c determines p” or “c is active.” To satisfy active clause coverage,

each clause must be shown to determine p. The clause under consideration is

called themajor clause in p, and the others are calledminor clauses. The concept

of determination is formalized below.

Definition—Given a major clause ci in predicate p, we say that ci determines p

if the minor clauses cj2p, j 6¼ i have values so that changing the truth value of

ci changes the truth value of p.

Several variations of active clause coverage criteria have been proposed, but

the most widely used is the restricted active clause coverage criterion also known in

the industry as MC/DC (Modified Condition/Decision Coverage), which is

required by the FAA for safety critical software.

The restricted active clause coverage criterion is formally defined as follows: for

each predicate p and each major clause ci in p, choose values for minor clauses

cj, j 6¼ i, so that ci determines p. TR has two requirements for each ci: ci
evaluates to true and ci evaluates to false. The values chosen for the minor

clauses cj must be the same when ci is true as when ci is false.

The table below illustrates this criterion using predicate p¼ (c1 &&

c2 && c3). Clause c1 determines p (ie, c1 is active) due to test cases {t1,

t5}, since a change in the value of c1 causes a change in the value of p, while

c2 and c3 are unchanged. Clause c2 determines p due to test cases {t1, t3},

since a change in c2 causes a change in p, while c1 and c3 are unchanged.

Similarly for c3, it determines p due to test cases {t1, t2}, while c1 and c2

are unchanged. Consequently, test suite {t1, t2, t3, t5}, shown at the bottom

of the table, satisfies the restricted active clause coverage criterion or MC/DC.

Test Case c1 c2 c3 c1 && c2 && c3

t1 True True True True

t2 True True False False

t3 True False True False

t4 True False False False

88 W. Masri and F.A. Zaraket

t5 False True True False

t6 False True False False

t7 False False True False

t8 False False False False

t1 True True True True

t5 False True True False

t3 True False True False

t2 True True False False

Finally, there are several logic coverage criteria proposed by the research

community, of which we only presented four. In regard to subsumption,

those are related as follows: combinatorial coverage subsumes active clause

coverage, which in turn subsumes clause coverage and predicate coverage.

5. EARLY TECHNIQUES: PROFILING FOR BASIC
COVERAGE

Applying any given coverage-based technique requires the use of a

profiling tool that enables collecting execution profiles during test suite exe-

cution. Such profiles (one per test case) capture the frequency of execution

of the program elements associated with the technique at hand. This section

briefly describes the approaches adopted by the tools that capture profiles of

basic elements, namely, functions, function pairs, basic blocks, branches,

def-uses, predicates, and clauses. Section 6 presents an approach for profiling

acyclic paths. Detailed descriptions of profiling dependence chains, slice

pairs, information flow pairs, and values of variables can be found in Refs.

[3–10].
Profiling involves inserting probes in the subject program via instrumen-

tation, which could be carried out at different language levels. For example,

some tools instrument the Java or C code, others the Java Byte Code

(eg, using BCEL [11] or ASM [12]), and some instrument the binary code

(eg, using Pin [13]). Typically, probes are calls to profiler functions that col-

lectively track the occurrence of program events that are of interest to the

technique, such as branch executions.

89Coverage-Based Software Testing

5.1 Profiling Structural Elements
To capture function profiles, a probe is inserted at the entry of every function

for the purpose of registering the invocation of the given function. This

could be achieved by calling a profiler function and passing it a unique iden-

tifier of the invoked function, eg, class name, method name, and method

signature in the case of Java. Profiling function pairs would additionally

require that the previously invoked function be taken into consideration.

An important point to make is that for multi-threaded subject programs,

the events tracked by the profiler must be labeled with the current thread

identifier. This might not be relevant for function or statement profiles,

but it is critical for function pair, branch, and def-use pair profiles since each

of their profiling elements involves more than a single recorded event.

As noted in Section 3.2, basic block profiles are more widely used than

statement profiles. To collect basic block profiles, a call to a profiler function is

typically inserted at the entry of every basic block. The function is passed a

unique identifier of the executed basic block, which comprises the method

identifier and the basic block’s sequential order within the method.

A program branch is defined by a pair of basic blocks where the first is a

decision basic block, ie, having a decision statement as a last statement.

Branch profiling tools typically start by building the basic block based CFGs

of the profiled functions, which inherently have information about whether

a given basic block is a decision basic block or not. Therefore, not all edges in

theCFGs are relevant, but only those originating fromdecision nodes.Branch

profiles are collected by: (1) inserting a call to a profiler function at the entry of

every basic block; (2) considering that a branch was taken if the previously

executed basic block is a decision node; and (3) recording the occurrence of

a branch by denoting its source and destination basic blocks.

In Section 4.1 we stated that computing TR for def-use coverage

is nontrivial. In regard to profiling, all-defs coverage and all-uses coverage

are straightforward, but it is not the case for all-du-paths coverage. Since all-

du-paths coverage requires tracking specific paths (although simple paths),

whereas all-defs coverage and all-uses coverage only require determining

whether some set of def-uses occurred regardless of how a definition reached

its use(s). We now describe a profiling approach that identifies the set of def-

use pairs that occurred during the execution of a test case, that is, an approach

that supports all-defs coverage, all-uses coverage, and the coverage-based test

suite minimization techniques described in Sections 8 and 9. The approach

uses a hash table in which the keys represent unique identifiers of defined

variables, and the values represent unique identifiers of the corresponding

90 W. Masri and F.A. Zaraket

definition statements. That is, the table tracks where each variable was last

defined. When a variable v is used at statement suse, the hash table is looked

up using the identifier of v to fetch the statement that last defined it, sdef.

The occurrence of the def-use (v, sdef, suse) is then recorded.

Finally, the following complicating factors are worth mentioning: (1) the

definition and the use must occur within the same thread, ie, the tool must

be thread-safe; and (2) it is possible to uniquely identify static and instance

variables with certainty, but it is not the case for local variables. In Java, for

example, the couple (class name, static attribute name) uniquely identifies a

static variable; the couple (object reference, attribute name) uniquely identifies

an instance variable. However, to identify a local variable, one might rely

on the method identifier, thread identifier, and the variable’s byte code index,

but this is not sufficient for two reasons: (1) the same byte code index could

be reused for different variables within the same method; and (2) multiple

invocations of a given method result in multiple instances of the seemingly

same local variables, but in fact they are not the same. Both of these issues

are problematic for most profiling tools involving local variables [7]. But it

should be noted that for def-use profiling, issue (2) could be circumvented

by clearing the hash table from any entries involving local variables that were

inserted between method entry and method exit.

5.2 Profiling Logic Elements
When every predicate in a program contains a single clause, logic coverage

converges to branch coverage. That is, combinatorial coverage, active clause

coverage, clause coverage, and predicate coverage would all be equivalent to

branch coverage. This is not an unlikely scenario, since many profiling tools

operate at a low language level (eg, Java byte code, MSIL, or binary), in

which there is no support for multiple clauses in predicates.

However, in the general case, the profiler needs to track the truth values

of all clauses in a given predicate. Using the example presented in

Section 4.2, in order to satisfy

void recordCoverage(boolean c1, boolean, c2, boolean c3)

{

if (c1) {

if (c2) {

if (c3) {

coverage[1]++; // {true, true, true} is covered

}

91Coverage-Based Software Testing

else

{

coverage[4]++; // {true, true, false} is covered

}

}

else {

if (c3) {

coverage[3]++; // {true, false, true} is covered

}

}

}

else {

if (c2) {

if (c3) {

coverage[2]++; // {false, true, true} is covered

}

}

}

}

restricted active clause coverage, clauses (c1, c2, c3) in predicate (c1 &&

c2 && c3) should take on the following values: {true, true, true}, {false, true,

true}, {true, false, true}, and {true, true, false}. A profiling tool could verify

whether such requirements are satisfied by inserting a call right before the

predicate to the profiler function “recordCoverage(),” shown.

Here, a nonzero entry in the coverage array indicates that the associated

test requirement was satisfied. Given the test requirements, generating

functions such as “recordCoverage()” could easily be automated.

6. EFFICIENT PROFILING FOR PATH COVERAGE

If the aim of profiling is to approximate the execution path of a

program, then path profiling is obviously most desirable. However, in the

presence of loops, the number of potential paths becomes unbounded, mak-

ing path profiling infeasible. One way to tame this problem is to consider

acyclic paths only, ie, when enumerating the paths to be tracked, ignore

the cycle causing edges in the CFG, or back-edges. This approach renders

profiling more manageable; nevertheless, the number of acyclic paths in a

program is still exponential in the number of conditional statements it

contains.

92 W. Masri and F.A. Zaraket

Ball and Larus [14] presented an algorithm for intraprocedural profiling

of acyclic paths, which is deemed efficient as its overhead averaged only

31%, while (efficient) branch profiling averaged 16% using the same bench-

mark. Although the work was published almost two decades ago, we opted

to include it in this chapter as it is still considered state of the art due to its

innovation, efficiency, and striking simplicity.

To illustrate the algorithm, consider the acyclic CFG in Fig. 3 in which

edges labeled by small squares contain probes that increment variable r by

some preset value. Note how there are six unique paths from node A to node

F and each path results in a different value for r, as shown in the table. When

node F is reached, the value of r uniquely identifies the path that was

traversed, and thus is used to index into array “int count[5],” which tracks

the frequency of execution of each of the six paths. For example, if path

ABDF was executed, r takes on the value 4, and count[4] is incremented

by 1. Therefore, at the end of execution, count[] fully captures the frequency

of occurrence of every path in the CFG. Next, we describe the main steps of

the algorithm.

6.1 Assigning Values to Edges
First, a weight or value Val(e) must be assigned to each edge e in the acyclic

CFG, such that the sum of values along any path from the entry node to the

exit node: (a) is unique; and (b) lies in the range [0, n�1], where n is the

number of paths.

The algorithm below computes Val(e) by visiting the nodes of the CFG

in reverse topological order, which ensures that all the successors of a node v

are visited before v itself. NumPaths(v) is also computed for each node v,

which represents the number of paths from v to the exit node.When visiting

Fig. 3 Acyclic control flow graph with probes.

93Coverage-Based Software Testing

v, the algorithm considers all of v’s outgoing edges v ! wi and assigns the kth

outgoing edge the value:

Val v!wkð Þ¼
Xk�1

i¼1

NumPaths wið Þ, where 1� i� n

for each vertex v in reverse topological order {

if v is a leaf vertex {

1. NumPaths(v) = 1;

} else {

NumPaths(v) = 0;

for each edge e = v!w {

2. Val(e) = NumPaths(v);

3. NumPaths(v) += NumPaths(w);

}

}

}

To illustrate the algorithm of this step, consider the acyclic CFG in

Fig. 4. Note that in case this CFG contained any cycles, the corresponding

back-edges would first be removed before proceeding. The nodes are visited

in the order FEDCBA (ie, in reverse topological order):

(a) Visiting F: Since F is a leaf node, line 1 sets NumPaths(F) to 1.

(b) Visiting E: Since E is the source of the single edge E!F, the loop only

iterates once yielding Val(E!F)¼0 due to line 2, andNumPaths(E)¼
0+NumPaths(F)¼1 due to line 3.

(c) Visiting D: Since D is the source of two edges, the loop iterates twice.

The first iteration involves D!F yielding Val(D!F)¼0 and

Fig. 4 Acyclic control flow graph with edge values.

94 W. Masri and F.A. Zaraket

NumPaths(D)¼0+NumPaths(F)¼1. The second iteration involves

D!E yielding Val(D!E)¼NumPaths(D)¼1 due to line 2, and

NumPaths(D)¼1+NumPaths(E)¼2.

(d) Visiting C: The only iteration involves C!D yielding Val(C!D)¼
0 and NumPaths(C)¼0+NumPaths(D)¼2.

(e) Visiting B: The first iteration involves B!C yielding Val(B!C)¼
0 and NumPaths(B)¼0+NumPaths(C)¼2. The second iteration

involves B!D yielding Val(B!D)¼NumPaths(B)¼2, and

NumPaths(B)¼2+NumPaths(D)¼4.

(f) Visiting A: The first iteration involves A!C yielding Val(A!C)¼
0 and NumPaths(A)¼0+NumPaths(C)¼2. The second iteration

involves A!B yielding Val(A!B)¼NumPaths(A)¼2, and

NumPaths(A)¼2+NumPaths(B)¼6, indicating that six paths are pos-

sible in the CFG.

The table in Fig. 4 shows the results of visiting each given node v,

ie, NumPaths(v) and zero or more Val(v!wi). In addition, each edge e in

the CFG of Fig. 4 is annotated with its corresponding Val(e).

6.2 Selecting Edges for Instrumentation
The proposed path profiling approach could be implemented by inserting

probes at every edge in the CFG that will use the values computed in the

previous section. However, for efficiency purposes it is desirable to insert

probes at a subset of the CFG edges that will likely exhibit a low frequency

of execution. These edges and their corresponding weights are identified as

follows:

1. A maximum spanning tree of the CFG is computed, where the weight

of an edge represents its execution frequency. Since determining such

frequencies requires edge profiling which is costly, the authors opted

to approximate them statically using a technique they previously

presented [15].

2. The chords of the maximum spanning tree are identified, ie, edges in the

CFG that are not part of the spanning tree. The probes will be inserted at

the chords since their combined execution frequencies will potentially

be minimal.

3. The values assigned to the chords must compensate for the values of the

edges that were excluded. Given a chord c, its value is computed as fol-

lows: (a) an acyclic path from the entry node to the exit node traversing c

is identified; (b) in case c is the only chord in that path, it will be assigned

95Coverage-Based Software Testing

the sum of the values of all the edges in it; (c) in case multiple chords are

in the path, the algorithm ensures that the sum of what is to assign to the

chords is equal to the sum of the values of all the edges in the path, as

detailed in Ref. [15].

Applying the above onto the CFG of Fig. 4 results in the CFG shown in

Fig. 5, which shows the probes annotated with their corresponding values.

Considering the path ABDF that traverses a single chord B!D. The value 4

assigned to B!D is computed by summing Val(A!B)¼2, Val(B!D)¼
2, and Val(D!F)¼0.

6.3 Regenerating a Path from Its Value
Following test suite execution, the frequency of occurrence of every path in

the CFG is recorded in count[]. To regenerate a path profile from the coun-

ters in count[], it is necessary to relate the integer representing a path to the

path itself. This requires the use of the edge values computed in Section 6.1

as below:

1. Let v be a node in the annotated CFG

2. Set v to be the entry node

3. Let r be the path value, ie, count[r] is the frequency of execution of the

path to regenerate from r

4. Among the edges outgoing from v, identify edge e having the largest

value such that Val(e)� r

5. Traverse edge e and update v to be the target of e, and r as follows: r¼ r–
Val(e)

6. If the exit node is not reached, go to 4

Considering the CFG in Fig. 5 and assuming that r is 3. At the entry node A,

sinceVal(A!B)>Val(A!C) andVal(A!B)� r, A!B is traversed caus-

ing r to be updated to 1. At node B, B!C is traversed sinceVal(B!D)> r.

Fig. 5 CFG with probes.

96 W. Masri and F.A. Zaraket

At node C, C!D is traversed. At node D, Val(D!E)>Val(D!F) and

Val(D!E)� r so D!E is traversed causing r to be updated to 0. Finally,

F is reached via E!F. Therefore, when r is 3, the algorithm generates path

ABCDEF, which expectedly is the only path whose cost is 3.

6.4 Dealing with Loops
When identifying the edge values and probe increments, the proposed algo-

rithm ignores the presence of cycle causing back-edges. As a result, the exe-

cution of a given back-edge n times would not be recorded as if n additional

paths were executed. However, the algorithm will record that the path(s)

going through the loop executed n times. To illustrate how this is achieved,

consider the cyclical CFG in Fig. 6. In order to handle cycles, each back-

edge (E!B in this case) is instrumented with “count[r]++” followed by

“r¼0” which records the path up to the back-edge (count[r]++) and pre-

pares to record the path after the back-edge (r ¼ 0). This causes a problem

though, as different paths might yield the same value of r, as shown in the

table of Fig. 6. For example, {ABDEF, ABDE, BDE, BDEF} all have 2

as the value of r. However, paths starting at the entry node and ending at

the exit node will have different values of r, ie, ABCEF and ABDEF. To

remedy this problem the following steps are taken, which are described

in detail in Ref. [15]:

(1) For each node v that is the target of a back-edge, a dummy edge from

the entry node to v is added.

(2) For each node w that is the source of a back-edge, a dummy edge from

w to the exit node is added.

Fig. 6 Cyclical CFG.

97Coverage-Based Software Testing

(3) The back-edges are removed.

(4) The edge values and probe increments are computed, as in Sections 6.1

and 6.2.

The basic idea is that the dummy edges create additional paths from the entry

node to the exit node that the algorithm in Section 6.1 takes into account.

The dummy edge originating from the entry node corresponds to rein-

itializing the path value along the loop’s back-edge. The dummy edge inci-

dent on the exit node corresponds to incrementing the path counter along

the back-edge. Fig. 7A shows the transformed CFG along with the two

added edges, and new edge values. Note how the dummy edges are assigned

values, whereas the back-edge is not. Fig. 7B shows the probes’ locations and

increments and the table in Fig. 7 shows the nine recorded paths along with

their path values, which are unique and fall in the [0, 8] range.

To illustrate how the proposed acyclic path profiling can capture the

number of loop iterations, consider the execution path A1B1C1E1B2C2E2

B3D1E3F1. At E1, count[2] is incremented indicating that ABCE executed.

At E2, count[6] is incremented indicating that BCE executed. At E3, count

[8] is incremented indicating that BDE executed. Finally at F1, count[7] is

incremented indicating that BDEF executed.

7. TEST CASE GENERATION FOR PATH COVERAGE

Coverage criteria could be applied on two types of test suites: (1) exis-

ting regression test suites that were manually created or collected from the

Fig. 7 Transformed CFG, probes, and paths with unique values.

98 W. Masri and F.A. Zaraket

field; and (2) automatically generated test suites. This section is concerned

with the latter type. Specifically, since path coverage is the ultimate form

of structural coverage (in the sense that it subsumes all other structural cov-

erage techniques), the focus here will be on test case generation techniques

that inherently aim at increasing path coverage. Noting that other strategies

have also been shown to be successful, such as those categorized as evolu-

tionary [16] or random based.

This section reviews symbolic execution, in its both static and dynamic con-

texts, since it is at the heart of test case generation approaches that aim at

increasing path coverage.

7.1 Static Symbolic Execution
Static symbolic execution [17], or simply symbolic execution, is a technique that

aims at computing all possible paths in a program and representing each sym-

bolically. One form of symbolic path representation is a path condition (PC).

A PC is a first-order formula (FOL) such that the inputs satisfying it execute

the associated path. Theoretically, the technique is capable of generating the

set of test cases that induces all possible paths in a program without requiring

its execution by finding one satisfying input for each PC. Fig. 8 illustrates

how symbolic execution works. This code has three potential paths repre-

sented by execution traces p1¼hl1, l2, l8i, p2¼hl1, l2, l3, l4, l5, l6, l8i, and
p3¼hl1, l2, l3, l4, l5, l6, l7, l8i. The goal of symbolic execution is to provide

for each of the three paths a test case that induces it, ie, a test case t1 that

induces p1, t2 that induces p2, and t3 that induces p3.

This is typically achieved via emulating abstract program execution

while traversing the binary computation tree of the program in a depth-first

manner [17,18]. In a computation tree, each inner node represents the

〈A ≤ B〉 end

〈A > B〉 x = A + B

〈A > B〉 y = A + B – B = A

〈A > B〉 x = A + B – A = B

〈A > B〉 B – A > ?0

x = A, y = B

A > ? B

l1: int x, y;

l2: if (x > y) {

l3: x = x + y;

l4: y = x – y;

l5: x = x – y;

l6: if (x – y > 0)

l7: assert(false)

l8: } 〈A > B B – A ≤ 0〉 end>

〈A > B B – A > 0〉 infeasible>

Fig. 8 Static symbolic execution at work.

99Coverage-Based Software Testing

execution of a conditional statement, and each edge represents the execution

of a sequence of nonconditional statements. For each path p in the tree,

symbolic execution constructs a PC that characterizes the input assignments

for which the program executes along p. A path condition is an FOL

over constraints on input values. If a path condition is satisfiable, then the

corresponding path is feasible. Fig. 9 shows the computation tree

corresponding to the code in Fig. 8.

The steps for generating t1, t2, and t3 are as follows:

1. The abstract execution keeps a symbolic value for each variable in the

program and also keeps path conditions that must be satisfied for the

execution to proceed.

2. The symbolic execution starts with the variables “x” and “y” assuming

the symbolic values of “A” and “B,” respectively.

3. Two branches are possible at the “if” condition of line l2. The false

branch results in p1¼hl1, l2, l8i with an associated path condition of

“A�B.” Symbolic execution typically uses a propositional logic

satisfiability (SAT) solver or an FOL satisfiability modulo theory

(SMT–SAT) solver to find a satisfying assignment (values for “A” and

“B”) for “A�B,” yielding test case t1(x¼A¼0, y¼B¼1) as one

possibility.

4. The true branch originating from line l2 goes to line l3 inside the body of

the “if” condition with a path condition of “A>B.”

5. The symbolic execution updates the values of “x” and “y” with each

statement. It uses the constraint solver to resolve and simplify the values

and the path conditions. For example, this enables simplifying the path

condition expression “A+B�B” to “A” on line l4.

F

F

T

l1,l2

l3– l6

l8 l8
l7

T

Fig. 9 Computation tree.

100 W. Masri and F.A. Zaraket

6. The false branch originating from line l6 results in p2¼hl1, l2, l3, l4, l5, l6,
l8iwith an associated path condition of “(A>B)^ (B�A�0),” yielding

test case t2(x¼1, y¼0) as one possibility.

7. Since the path condition “(A>B)^ (B�A>0)” which is associated

with p3¼hl1, l2, l3, l4, l5, l6, l7, l8i could never be satisfied, the SMT

solver would determine that p3 is infeasible.

In the presence of unbounded loops, both static and dynamic symbolic

executions suffer from the path explosion problem, which translates into

unmanageably deep computation trees. This problem is typically addressed

by bounding the depths of the trees, which will obviously impact the effec-

tiveness of the approach. In addition, static symbolic execution is especially

limited by the power of the underlying constraint solver. Consider the

following example presented in Ref. [19]:

int obscure(int x, int y) {

if (x == hash(y)) return -1; // error

return 0; // ok

}

If properly designed, the “hash()” function should not return a value

that straightforwardly conveys any information about its input; ie, the rela-

tionship between its input and output should be complex. In such a case, exis-

ting constraint solvers would not be capable of generating inputs (values for x

and y) that satisfy the condition “x ¼¼ hash(y),” thus rendering static sym-

bolic execution ineffective. This problem is rather common, as it is also

manifested when pointers and nonlinear arithmetic expressions are involved.

Pointers are a complicating factor since they require corresponding objects to

be present and aliases to be inferred. Nonlinear expressions are problematic

since existing solvers can only handle sets of linear equations. In order to

address this shortcoming, Korel [20,21] proposed dynamic symbolic execution.

7.2 Dynamic Symbolic Execution
Test case generation via dynamic symbolic execution, or DSE, typically pro-

ceeds as follows [18,22,23]:

1. Similar to static symbolic execution, the goal is to traverse the binary

computation tree of the subject program in a depth-first manner.

2. The program is concretely executed with some given or random input t1
that induces path p1 in the tree.

3. Concurrently, the program is symbolically executed and path constraints

on inputs are gathered at conditional statements along p1.

101Coverage-Based Software Testing

4. The gathered constraints are altered by negating the constraint associ-

ated with the deepest conditional statement in p1 that has not been

negated before. An SMT solver is applied onto the resulting constraints

in order to generate input t2 that is meant to induce path p2 that would

be most similar to p1 among the paths that have not been traversed

before.

5. The program is concretely executed with t2, and steps 3 and 4 are per-

formed on t2 resulting in t3 and so on until the computation tree is fully

traversed.

Dynamic symbolic execution is no different from its static counterpart in

that it aims at generating a test case for each path in the computation tree.

However, DSE benefits from executing the program both concretely and

symbolically as follows:

1. When the symbolic expressions fall into nondecidable theories such as

when they contain nonlinear subexpressions, the SMT–SAT solvers

return inconclusive results. DSE then replaces the expression by its asso-

ciated concrete value.

2. Pointers in constraints are handled either by including a memory model

or by replacing them by their corresponding concrete values. This is

done to avoid pointer arithmetic and the inclusion of complex memory

modeling and is justified by looking for NULL pointer defects solely.

3. On the other hand, symbolic execution helps generate concrete inputs

for the next similar execution, thus resulting in better path coverage.

Several research and industry tools support the DSE technique. DART [23]

derives a model of the program interface, generates a directed random test

suite based on the model, and then refines the generated test suite by adding

randomly generated test cases that increase path coverage systematically.

DART targets standard errors such as crashes and nontermination assertion

violations.

CUTE [18] presents a concolic (concrete-symbolic) execution tech-

nique that starts with executing the program on a randomly generated input.

CUTE records the path conditions of the paths executed by the input. It

systematically flips predicates in the collected path conditions that lead to

paths that have not been explored before. It queries the SMT solver for

satisfying assignment to the modified path conditions. It uses the returned

satisfying assignments as test cases that increase path coverage.

SAGE [22], PEX [24], and YOGI [25] from Microsoft research follow

the same suit of DART. SAGE is a variant of DART that uses fuzzing in

order to detect security defects. PEX targets .NET binaries and generates

102 W. Masri and F.A. Zaraket

parametrized-unit tests for .NET programs. YOGI additionally checks the

feasibility of program paths using a counterexample refinement methodol-

ogy similar to SLAM [26].

KLEE [27] extends the concept of symbolic execution with constraint

solving optimizations and with search heuristics that enable increasing code

coverage metrics. The optimizations and the heuristics enable KLEE to

work on real size applications.

8. TEST SUITE MINIMIZATION: COVERING COMPLEX TR'S

Given a program P, a test suite T, and a set of test requirements TR

that are covered by T. Test suite minimization (also referred to as test suite

reduction in the literature) aims at finding T0, a minimal subset of T, that

covers all test requirements in TR. The conjecture is that (the smaller) T0

would be as effective as T in revealing defects.

The authors in Ref. [5] conducted an empirical study to assess the impact

of using complex test requirements as opposed to basic test requirements in

test suite minimization, with respect to its effectiveness at revealing defects.

The complex program elements they considered were slice pairs and informa-

tion flow pairs. This section presents the part of the work presented in Ref. [5]

that relates to coverage-based test suite minimization.

8.1 Coverage-Based Test Suite Minimization
The main reasons for minimizing test suites are: (1) to reduce the cost of test

suite execution and (2) to reduce the number of test executions for which it

is necessary either to manually determine correct output or to audit (man-

ually check) actual output. Typically, the cost of manually determining or

auditing output dominates the cost of test suite execution. Coverage-based

test suite minimization selects test cases from T to include in T0 in a way that

maximizes the proportion of program elements that are covered. It attempts

to cover as many of the elements covered by T with as few test cases as

possible. A coverage-maximizing subset of a test suite is an instance of

the set-cover problem, which is NP-complete but which admits a greedy

approximation algorithm [28]. On each of its iterations, the greedy algo-

rithm selects the test that covers the largest number of elements not covered

by the previously selected tests. This specific approach was termed basic

coverage maximization in Ref. [5].

103Coverage-Based Software Testing

8.2 Covering Complex Program Elements
In coverage-based test suite minimization, the profiles used to characterize

test executions indicate the execution frequency of certain program ele-

ments that are believed to be relevant to whether executions succeed or fail.

Profiling reduces a complete execution history to a more compact form that

is amenable to analysis. For a failed execution to be revealed, its profile must

differ in some way from the profiles of successful executions. One of the

main goals of the work described in Ref. [5] is to measure the effect of vary-

ing the type of the covered program elements on the effectiveness of

coverage-based test suite minimization. The authors employed several types

of profiles with program elements of different complexities:

• Method calls (MC) or functions: For every methodM that is executed in

at least one test, anMC profile contains a count of how many timesM is

called in the current test.

• Method call pairs (MCP) or function pairs: For every combination of

methods M1 and M2 such that M1 calls M2 in at least one test, an

MCP profile contains a count of how many times M1 calls M2 in the

current test.

• Basic blocks (BB): For every basic block B such that B is executed in at

least one test, a BB profile contains a count of how many times B is exe-

cuted in the current test.

• Basic block edges (BBE) or branches: For every pair of basic blocks B1

and B2 such that there is a branch from B1 to B2 in at least one test, a

BBE profile contains a count of how many times this branch is taken in

the current test.

• Def-use pairs (DUP): For every pair consisting of a variable definition

D(x) and a use U(x) such that D(x) dynamically reaches U(x) in at least

one test, a DUP profile contains a count of how many times D(x)

dynamically reaches U(x) in the current test.

• All simpler profiles combined (ALL): Combined counts of MC, MCP,

BB, BBE, and DUP.

• Information flow pairs (IFP): For each combination of variables x and y

such that information flowed dynamically from x into y in at least one

test, an IFP profile contains a count of how many times such a flow

occurred in the current test.

• Slice pairs (SliceP): For each pair of statements s1 and s2 such that s1 occurs

in a (backward) dynamic slice [29,30] on s2 in at least one test, a SliceP

profile contains a count of how many times s1 occurs in such a slice.

104 W. Masri and F.A. Zaraket

IFP and SliceP are clearly the most complex among the above eight program

elements. IFP is based on dynamic information flow analysis, and SliceP is based

on dynamic slicing, both of which are described in detail in Ref. [7]. Here, we

describe them briefly with the help of the Java code below:

s1: x = 1;

s2: y = 1;

s3: b = -1;

s4: if (b >0) {

s5: z = x;

} else {

s6: z = y;

}

Informally, in the context of static analysis, a statement t is directly control

dependent on a statement s, denoted t DCD s, if the control structure of the

program indicates that s decides, via the branches it controls, whether t is

executed or not, eg, s5 DCD s4 and s6 DCD s4. The dynamic counterpart

of the DCD relation is the dynamic direct control dependence relation or

DDynCD. An action sk is an executing program statement where s is the

statement and k is the position in the execution trace. For example, the code

above induces the following execution trace hs11, s22, s33, s44, s65i in which

action s6
5 indicates that statement s6was the fifth statement to execute in the

trace. Action tm is directly dynamically control dependent on action sk, denoted tm

DDynCD sk, if sk is the most recent predicate action to occur prior to action

tm such that t DCD s, eg, s6
5 DDynCD s4

4.

Informally, action tm is directly dynamically data dependent on action sk, den-

oted tm DDynDD sk, if and only if tm uses a variable or an object that was last

defined by sk, eg, s6
5 DDynDD s2

2. The DDynDD relation models both

intraprocedural and interprocedural data dependences. The latter occur

when an execution trace spans different functions and the data defined in

one function are used in another.

In addition to theDDynCD andDDynDD relations, three other kinds of

dynamic dependences between actions could be identified, each of which is

interprocedural:

(1) Use of a value returned by a return statement

(2) Use of a value passed by a formal parameter

(3) Control dependence on a calling method’s invoke instruction

The combination of the aforementioned five types of dependences comprises

what is called “direct influence.” Given two actions sk and tm with k<m, sk

directly influences tm, denoted sk DInfluence tm, if and only if tm exhibits any of

105Coverage-Based Software Testing

these five types of dependences upon sk. The set of actions that tm is directly

influenced by is denoted DInfluence(tm), eg, DInfluence(s6
5)¼{s4

4, s2
2}.

The dynamic information flow analysis adopted to compute the IFPs is

based on the following inductive equation:

InfoFlow tmð Þ¼U tmð Þ[
[

sk2DInfluence tmð Þ
InfoFlow sk

� �

Here U(tm) is the set of objects used at tm and DInfluence(tm) is the set of

actions that directly influence tm. InfoFlow(tm), the set of objects that flow

into (or influence) tm, comprises the objects used at tm and all the objects

from which information flows into the actions that directly influence tm.

For example, InfoFlow(s6
5)¼{y, b} which yields two information flow pairs

(s2, y, s6, z) and (s3, b, s6, z). The first quadruple states that information

flowed from y (last defined at s2) to z (last defined at s6).

The dynamic slicing algorithm is based on the following inductive

equation:

DynSlice tmð Þ¼ tf g[
[

sk2DInfluence tmð Þ
DynSlice sk

� �

DynSlice(tm), the set of statements that influence tm, comprises the state-

ment t itself and all the statements that influence the actions that directly

influence tm. For example, DynSlice(s6
5)¼{s6, s4, s3, s2} which yields three

slice pairs (s4, s6), (s3, s6), and (s2, s6).

8.3 Motivating Example
Coverage-based test suite minimization conjectures that for a failed execu-

tion to be revealed, its profile must differ in some way from the profiles of

successful executions. This section presents an example in which such con-

jecture does not apply when basic program elements are used, but does apply

when IFP profiles are used.

Consider the Java method shown in Table 1 where statement 5 is faulty;

the + operator should have been a �. Note how both the faulty and correct

statements assign the same value toyexcept when x[i] is equal to �1.

Therefore, the failure is triggered only in the case when one or more ele-

ments of x[] are equal to �1. Table 1 also shows the following: (a) test suite

T¼{t1, t2, t3, t4, t5, t6} in which each test case comprises three elements of

x[], two of the test cases trigger a failure and the other four do not; and

(b) the statement coverage information for each test case: a check mark

106 W. Masri and F.A. Zaraket

Table 1 Java Code and Statement Coverage Information for the Motivating Example

/* Statement 5 is faulty. The correct
statement is:
y = -x[i] - 1/x[i]; */

public static void foo(int [] x)

{

Passing Test Cases Failing Test Cases

t1
ð1
;2
;3
Þ

t2
ð0
;1
;2
Þ

t3
ð2
;3
;4
Þ

t4
ð5
;3
00

;1
Þ

t5
ð3
;1
;1
00

Þ

t6
ð1
00

;1
;1
Þ

1 int y; int z; ✓ ✓ ✓ ✓ ✓ ✓

2 for (int i = 0; i < x.length; i++){ ✓ ✓ ✓ ✓ ✓ ✓

3 y = 0; ✓ ✓ ✓ ✓ ✓ ✓

4 if (x[i] < 0) { ✓ ✓ ✓ ✓ ✓ ✓

5 y = -x[i] + 1/x[i]; ✓ ✓ ✓ ✓ ✓ ✓

6 } else if (x[i] > 0) { ✓ ✓ ✓ ✓

7 y = x[i] - 1/x[i]; ✓ ✓ ✓ ✓

}

8 if (y == 0) { ✓ ✓ ✓ ✓ ✓ ✓

9 z = ... ✓ ✓ ✓ ✓ ✓

} else {

10 z = ... ✓ ✓ ✓ ✓ ✓ ✓

}

}

11}

107Coverage-Based Software Testing

indicates that the statement at the given rowwas executed at least once using

the test case at the given column. Similarly, Table 2 shows the branch cov-

erage information for T, and Table 3 shows the corresponding def-use cov-

erage information.

Applying coverage-based test suite minimization on each of the set of

the profiles shown in Tables 1–3 could possibly yield a reduced test suite

T0 ¼{t1}, since in all three cases, t1 covers all the elements covered by T.

However, even though T0 is minimal in size, it does not include any failing

test cases, and thus is not effective at revealing the fault.

Table 4 shows the IFP coverage information. Note how IFP(5,y,9,z) is

only covered by both failing test cases t5 and t6. Which dictates that the min-

imized test suite T’must include at least one of them. Therefore, in this case

T0 will be effective at revealing the fault (although it must contain at least two

tests).

Table 2 Branch Coverage Information for the Motivating Example
Branch
(Source
Statement,
Target
Statement)

Passing Test Cases Failing Test Cases

t1(1, 2,
23)

t2(0, 1,
22)

t3(22,
23,24)

t4(25,
2300, 1)

t5(23, 21,
2100)

t6(100,
1, 21)

(8,9) ✓ ✓ ✓ ✓ ✓

(2,3) ✓ ✓ ✓ ✓ ✓ ✓

(4,5) ✓ ✓ ✓ ✓ ✓ ✓

(2,11) ✓ ✓ ✓ ✓ ✓ ✓

(8,10) ✓ ✓ ✓ ✓ ✓ ✓

(6,7) ✓ ✓ ✓ ✓

(4,6) ✓ ✓ ✓ ✓

Table 3 Def-Use Coverage Information for the Motivating Example
Def-Use
(Def
Statement,
Use
Statement)

Passing Test Cases Failing Test Cases

t1(1, 2,
23)

t2(0, 1,
22)

t3(22,
23,24)

t4(25,
2300, 1)

t5(23,
21, 2100)

t6(100,
1, 21)

(y,5,8) ✓ ✓ ✓ ✓ ✓ ✓

(y,7,8) ✓ ✓ ✓ ✓

108 W. Masri and F.A. Zaraket

Table 4 Information Flow Coverage Information for the Motivating Example
IFP
(Source Statement,
Source Object, Target
Statement, Target
Object)

Passing Test Cases Failing Test Cases

t1(1, 2,
23)

t2(0, 1,
22)

t3(22,
23, 24)

t4(25,
2300, 1)

t5(23,
21, 2100)

t6(100,
1, 21)

(5,y,9,z) ✓ ✓

(6,-,10,z) ✓ ✓

(7,y,10,z) ✓ ✓

(8,-,9,z) ✓ ✓ ✓ ✓ ✓

(2,-,9,z) ✓ ✓ ✓ ✓ ✓

(4,-,9,z) ✓ ✓ ✓ ✓ ✓

(5,y,8,-) ✓ ✓ ✓ ✓ ✓ ✓

(2,-,4,-) ✓ ✓ ✓ ✓ ✓ ✓

(2,-,8,-) ✓ ✓ ✓ ✓ ✓ ✓

(2,-,3,y) ✓ ✓ ✓ ✓ ✓ ✓

(4,-,5,y) ✓ ✓ ✓ ✓ ✓ ✓

(8,-,10,z) ✓ ✓ ✓ ✓ ✓ ✓

(2,-,5,y) ✓ ✓ ✓ ✓ ✓ ✓

(2,-,10,z) ✓ ✓ ✓ ✓ ✓ ✓

(4,-,8,-) ✓ ✓ ✓ ✓ ✓ ✓

(4,-,10,z) ✓ ✓ ✓ ✓ ✓ ✓

(7,y,8,-) ✓ ✓ ✓ ✓

(6,-,7,y) ✓ ✓ ✓ ✓

(4,-,6,-) ✓ ✓ ✓ ✓

(4,-,7,y) ✓ ✓ ✓ ✓

(2,-,6,-) ✓ ✓ ✓ ✓

(7,y,9,z) ✓ ✓ ✓ ✓

(6,-,8,-) ✓ ✓ ✓ ✓

(2,-,7,y) ✓ ✓ ✓ ✓

(6,-,9,z) ✓ ✓ ✓ ✓

(5,y,10,z) ✓ ✓ ✓ ✓ ✓

... . ‥

Note that in case the source and the target are conditional statements a “–” is used in place of the object name.

109Coverage-Based Software Testing

8.4 Empirical Study
Coverage-based test suite minimization, and specifically basic coverage

maximization, was applied to data sets derived from three subject programs.

It was used with each of the eight profile types described in Section 8.2, thus

yielding eight different variations. Simple random sampling was employed as

a baseline technique.

8.4.1 Experimental Setup
The variations considered were compared principally with respect to the

average percentage of defects that they revealed over a number of replicated

applications, viewed as a function of the number of tests selected. The num-

ber of tests selected for a given program is dictated by varying the type of

profiles used.

Basic coveragemaximization was accomplished for each subject program

and profile type by applying the greedy selection algorithm described in

Section 8.1 to the profiles of that type that were collected for the subject

program. A program element was considered to be covered by a test if its

corresponding profile entry was nonzero. For example, a test was considered

to cover a particular information flow pair if the corresponding element of

the test’s IFP profile was nonzero. Note that the greedy algorithm some-

times encounters ties (different tests that each covers the maximal number

of program elements not covered by previously selected tests). The way ties

are broken affects the number of tests selected. To address this in the exper-

iments, basic coverage maximization was replicated 1000 times for each pro-

gram/profile-type combination, first randomly permuting the order of the

tests. For each replication the authors recorded howmany tests were selected

and how many failures and defects were found and then they used their

respective averages in their analysis.

The performance statistics for simple random sampling (baseline tech-

nique) were computed by randomly selecting tests (without replacement)

from the given test suite and recording the number of failure-inducing tests

that were selected and the number of defects revealed. To account for the

variability of the samples, this procedure was replicated 1000 times and the

results were averaged.

In some cases, the raw profiles that were collected in the study contained

a large amount of redundant information [31]. For example, there were

groups of basic blocks that were always executed together, and therefore

their counts were the same in each execution. This redundant information

110 W. Masri and F.A. Zaraket

was removed by replacing each group of profiles features that always had the

same value (count) by a single feature. For example, when one subject

program (JTidy) was tested, close to 2.9 million distinct slice pairs were

detected. These were replaced by 331,004 unique features.

8.4.2 Subject Programs and Test Suites
In the experiments three Java programs were used: the javac Java compiler

version 1.3.1 (28,639 lines of code), the Xerces XML parser version 2.1

(52,528 lines of code), and the JTidy HTML syntax checker and pretty

printer version 3 (9153 lines of code).

javac was tested with the Jacks test suite, which tests compliance with the

Java Language Specification. The Jacks test suite comprises 3140 tests (each

containing six lines of code on average) among which 233 caused javac

to fail.

Xerces was tested by using part of the XML Conformance Test Suite

(XML TS), which provides a set of metrics for determining conformance

to the W3C XML Recommendation. There are 2000 tests in the XML

TS contributed by several organizations such as Sun Microsystems and

IBM.Only 1667 tests were used in the experiments (each containing 15 lines

of code on average) resulting in 10 failures. Note that 333 tests were

excluded because it was difficult to determine with certainty whether those

tests passed or failed. Xerces was configured to check only the syntax and not

the semantics of the input XML files, ie, to simply check whether the files

were well formed.

JTidy was tested using 1000 files (each containing 280 lines on average)

downloaded from the Google Groups (groups.google.com) using a web

crawler. Of these, five were XML files and the rest were HTML files. JTidy

failed on 47 of these test cases.

The defects causing the failures were investigated manually and the

failures were classified into groups believed to have been caused by the same

defect. For javac, 67 distinct defects were believed to have caused the 233

failures. For Xerces, 5 distinct defects were believed to have caused the 10

failures. For JTidy, 8 defects were believed to have caused the 47 failures.

8.4.3 Profile Characteristics
Table 5 shows for each program and profile type the number of unique pro-

file features (unique counts) and the number of original profile features

(original counts) that were generated while running the test suites. For

example, in the SliceP profiles for Xerces, there were 84,565 unique profile

111Coverage-Based Software Testing

http://groups.google.com

Table 5 Number of Unique and Original Counts (Profile Features) Encountered During Execution for the Various Types of Profiles
MC MCP BB BBE DUP ALL IFP SliceP

Xerces Unique 361 690 1725 1982 3812 4520 29,712 84,565

Original 797 1540 6967 7987 24,756 42,047 169,556 2,104,494

JTidy Unique 208 461 1436 1751 3991 4721 38,405 331,004

Original 327 723 4912 5714 19,660 31,336 89,871 2,874,715

Javac Unique 1022 2123 3655 4307 9620 11,315 66,829 762,798

Original 1281 4066 11,354 13,028 48,127 77,856 270,421 7,884,335

features, each corresponding to a pair of statements s1 and s2, such that at least

one dynamic slice computed at s2 contained s1. The column titled ALL

shows the combined counts of MC, MCP, BB, BBE, and DUP. Note

how the sum of the original counts for MC, MCP, BB, BBE, and DUP

equals the original count forALL, but as a result of the removal of redundant

information, the sum of the unique counts for MC, MCP, BB, BBE, and

DUP exceeds the unique count for ALL. As expected, Table 5 shows that

more detailed profile types have higher execution counts.

8.4.4 Basic Coverage Maximization Results
The results of performing basic coverage maximization with each of the

eight profile types are shown in Table 6. (The columns showing the number

of selected tests, revealed failures, and revealed defects represent the

outcome of averaging the results of 1000 replications, which explains

why they contain fractions.) For example, in the case of Xerces/IFP, the

greedy coverage maximization algorithm selected a set of tests that com-

prised, on average, just 10.43% of the original test suite, yet the selected tests

covered all of the information flows the original ones did. On average, the

selected tests revealed 35.14% of the failures and 70.28% of the defects rev-

ealed by the original test suite. It should be noted that both the percentage of

defects revealed and the percentage of tests selected need to be considered

when comparing the performance of one profile type to that of another. For

example, with Xerces only 0.84% of the tests were needed, on average, to

maximizeMC coverage. However, no defects were actually revealed, which

is clearly not acceptable. With javac, on the other hand, maximizing SliceP

coverage revealed 91.04% of the defects but required 45.19% of the tests to

be selected, on average.

In Figs. 10–12, the forms of basic coverage maximization corresponding

to each of the profile types are compared to simple random sampling with

respect to each technique’s average effectiveness for revealing defects.

Fig. 10 shows that with Xerces basic coverage maximization performed

considerably better than simple random sampling, except with MC profil-

ing, which revealed no defects. It also shows that with Xerces, maximizing

SliceP coverage revealed all defects, yet maximizing IFP coverage revealed

70.28% of the defects with only half as many tests.

Fig. 11 shows that with JTidy basic coverage maximization performed

better than simple random sampling for each profile type. Maximizing SliceP

coverage revealed all the defects but required the selection of 26.73% of the

tests. Maximizing ALL coverage revealed 94.8% of the defects with only

113Coverage-Based Software Testing

Table 6 Results for Basic Coverage Maximization
Profile
Type

Tests
Selected

% Tests
Selected

Failures
Selected

% Failures
Selected

Defects
Revealed

% Defects
Revealed

Xerces MC 14 0.84 0 0 0 0

1667

tests

MCP 59.53 3.57 1.21 12.11 1.21 24.22

BB 163.03 9.78 2 20 2 40

BBE 195.56 11.73 2.34 23.49 2.34 46.98

DUP 265.75 15.94 4.48 44.86 3 60

0.6%

failures

ALL 278.73 16.72 4.50 45.03 3 60

IFP 174 10.43 3.51 35.14 3.51 70.28

SliceP 344.05 20.63 7 70 5 100

JTidy MC 10 1 2 4.25 2 25

1000

tests

MCP 30.48 3.05 5.56 11.84 4.50 56.27

BB 51.28 5.12 10.15 21.60 4.51 56.45

BBE 64.5 6.45 13.31 28.33 6.49 81.2

DUP 119.86 11.98 19.22 40.90 6.62 82.82

4.7%

failures

ALL 123.63 12.36 20.19 42.97 7.58 94.8

IFP 128.43 12.84 20.92 44.51 7 87.5

SliceP 267.33 26.73 30 63.82 8 100

Javac MC 51.41 1.63 9.19 3.94 9.19 13.72

3140

tests

MCP 164.34 5.23 15.15 6.502 15.14 22.60

BB 245.07 7.80 20.07 8.613 19.1 28.50

BBE 315.76 10.05 25.22 10.82 21.92 32.72

DUP 572.13 18.22 53.01 22.75 41.91 62.55

7.42%

failures

ALL 606.31 19.30 55.14 23.66 42.39 63.27

IFP 589.59 18.77 57.51 24.68 45.62 68.10

SliceP 1419 45.19 108 46.35 61 91.04

The bold values highlight the best results achieved.

114 W. Masri and F.A. Zaraket

0

20

40

60

80

100

0 50 100 150 200 250 300

%
D

ef
ec

ts

#Tests

Random MC MCP

BB BBE DUP

ALL IFP SliceP

Fig. 11 Basic coverage maximization and random sampling results for JTidy (1000 tests,
47 failures, and 8 defects).

0

20

40

60

80

100

0 100 200 300 400

%
D

ef
ec

ts

#Tests

Random MC MCP

BB BBE DUP

ALL IFP SliceP

Fig. 10 Basic coverage maximization and random sampling results for Xerces (1667
tests, 10 failures, and 5 defects).

115Coverage-Based Software Testing

12.36% of the tests. The performance of coverage maximization was very

similar with ALL, DUP, and IFP profiles.

Fig. 12 shows that with javac coverage maximization revealed defects

more effectively than simple random sampling did for all profile types. Also,

the more detailed the profiles, the more tests were required to maximize

coverage and themore defects were revealed. A significant jump in effective-

ness was observed when def-use pairs, information flow pairs, and (espe-

cially) slice pairs were covered, although large numbers of tests were

required to maximize coverage of these elements.

It is noteworthy that with all of the data sets, maximizingDUP coverage

performed similar to maximizing ALL coverage. This outcome may be

related to the fact that all-uses coverage subsumes statement and branch

coverage as shown in Section 4.1.

8.4.5 Observations and Cost Analysis
The approach involves the collection and analysis of execution profiles. In

most cases the cost of collecting profiles dominated the cost of analyzing

0

20

40

60

80

100

0 500 1000 1500

%
D

ef
ec

ts

Random MC

MCP BB

BBE DUP

ALL IFP

SliceP

Fig. 12 Basic coverage maximization and random sampling results for javac (3140 tests,
233 failures, and 67 defects).

116 W. Masri and F.A. Zaraket

them. Table 7 shows the average execution times of the instrumented sub-

ject programs, Table 8 shows the average sizes of the collected profiles, and

Table 9 shows the analysis times for Xerces, broken down by the profile type.

As expected, Tables 7 and 8 clearly indicate that time and space require-

ments increase as the level of profile detail increases. Table 9 indicates that

the most time-consuming part of the analysis is profile consolidation, ie, the

process of merging information from all the execution profiles. Also, contra-

sting Tables 7 and 8 makes it clear that the time needed for profile collection

was much greater than the time needed for analysis. For example, the time

needed to collect the SliceP profiles for Xerces was 29�1667¼48,384 s,

whereas the time to analyze them was only 5630 s. It should be noted that

the times for IFP and SliceP collection are expected to decrease substantially

if optimized information flow analysis and slicing algorithms are used [6,30].

In summary, the empirical study showed that: (1) coveragemaximization

revealed defects more effectively than simple random sampling; (2) coverage

Table 9 Times for Individual Parts of Xerces Analysis, for Different Profile Types
Xerces MC/MCP/BB/BBE/DUPa (s) IFP (s) SliceP (s)

Profile consolidation 285 850 5620

Coverage maximization �1 �2 �10

aReported times are for the combined profile types.

Table 8 Average Execution Profile Sizes
MC/MCPa

(kB) MC/MCP/BB/BBEa (kB) MC/MCP/BB/BBE/DUPa (kB)
IFP
(kB)

SliceP
(kB)

Xerces 30 200 350 400 3000

JTidy 20 250 644 1200 32,000

Javac 25 300 600 2700 20,000

aThe profiles include information about multiple profile types.

Table 7 Observed Average Execution Times for the Instrumented Subject Programs
(The Average Execution Time for Each of the Original Programs was �1 s.)

MC/MCPa (s) MC/MCP/BB/BBEa (s) MC/MCP/BB/BBE/DUPa (s) IFP (s) SliceP (s)

Xerces �1 2 4 23 29

JTidy �1 5 90 900 1200

Javac 2 11 114 216 360

aThe program was instrumented to generate profiles for multiple profile types.

117Coverage-Based Software Testing

maximization based on complex profiles such as IFP and SliceP profiles rev-

ealed defects not revealed with simpler profiles, at the cost of additional tests;

and (3) coverage maximization based on SliceP profiles revealed the most

defects. Hence, the additional cost of using profiles of finer granularity

appears justified.

9. TEST SUITE MINIMIZATION: COVERING
COMBINATIONS OF BASIC TR'S

The empirical study in Section 8 showed that covering program

elements with finer granularity revealed relatively more defects but resulted

in larger subsets and higher cost. The authors in Ref. [32] explored test suite

minimization by covering combinations of basic program elements of

different types. The conjecture is that these combinations are more likely

to characterize complex failures and are cheaper to collect since they are

based on basic elements. Clearly, exploring all possible combinations

induced by a test suite is infeasible, which necessitates the use of an approx-

imation algorithm. Hence, they investigated the use of a genetic algorithm

to select a number of suitable combinations of program elements to be

covered during minimization.

9.1 Test Suite Minimization
Given a test suite T, the aim is to find the smallest subset T0 of T that is

capable of revealing most, and preferably all, of the defects revealed by T.

The proposed technique is motivated by the following conjectures:

(1) Combinations of program elements are more likely to characterize

complex failures [33]. Therefore, a technique based on covering com-

binations of elements (eg, statements, branches, def-use pairs, etc.) is

likely to be more effective than one that covers single types of elements.

(2) The percentage of failing tests is typically much smaller than that of the

passing tests. Specifically, each defect typically only causes a small per-

centage of tests to fail. Therefore, smaller groups of similar tests are more

likely to be failure inducing than larger ones.

The main steps of the minimization technique are as follows:

(1) Given a test suite T, generate execution profiles of basic program

elements, namely, statements, branches, and def-use pairs.

(2) Choose a threshold Mfail for the maximum number of tests that could

fail due to a single defect (eg, if jTj¼1000, a sensible value of Mfail

would be 100).

118 W. Masri and F.A. Zaraket

(3) Generate C, a pool of combinations of basic program elements (see

Section 9.3).

(4) Extract C0 from C, the set of combinations that were covered by less

than Mfail tests. When possible, the distribution of C0 should span the

full range [1,Mfail]. For example, it is desirable that C0 includes combi-

nations that occurred in 1 test, 2 tests, 3 tests, …, Mfail tests. Failing to

assure that might reduce the effectiveness of the proposed technique as

some suspicious combinations might not get included in C0.
(5) Use a greedy algorithm to identify T0, the smallest subset of T that

covers all the combinations in C0. On each of its iterations, the algo-

rithm selects the test that covers the largest number of combinations

not covered by the previously selected tests (more details could be

found in Ref. [5]).

Steps (3) and (4) are clearly the most challenging as they entail exploring

combinations of program elements whose number is exponential with

respect to the number of the basic program elements. Since a brute-force

approach is clearly not viable, the authors chose to use a genetic algorithm

as an alternative approximation approach, as described next.

9.2 Genetic Algorithm
The aim here is to use a genetic algorithm to generate a number of combi-

nations of basic program elements that are exercised by the least number of

tests inT, based on the assumption that such combinations are more likely to

be failure inducing than others. In general, a genetic algorithm solves a given

problem by operating on an initial population of candidate solutions or

chromosomes, evaluating their quality using a fitness function, applying a form

of transformation to form new generations and improve the quality of these

solutions, and ultimately evolving to a single solution or set of solutions that

fit certain criteria. The main actors and phases of the algorithm are described

below.

9.2.1 Chromosome Representation
In this implementation, a chromosome has to represent a combination

of executed statements, branches, and def-use pairs, so a bit string no-

tation can indicate which profiled elements are included in each combina-

tion instance. The size of each bit string is equal to the total number of

execution elements gathered during profiling; a bit set to 1 implies that

the corresponding element is included in this combination, and the number

of 1s in the bit string corresponds to the size of the combination.

119Coverage-Based Software Testing

9.2.2 Fitness Function
Once a chromosome/combination is created, its fitness is evaluated to deter-

mine how good it is in identifying possible failure conditions. The following

equation is used:

fitness combinationð Þ¼ 1�%tests

where %tests is the percentage of test cases in T that exercised the combi-

nation; the smaller the percentage the higher the fitness. Ultimately, the

aim is to end up with a manageable set of combinations in which each com-

bination has a fitness value �(1�Mfail/jTj), ie, each combination occurred

in at most Mfail tests.

9.2.3 Population Generation
The population is a collection of candidate solutions, which will evolve into

the final solution. The population is formed, one bit string at a time, by tak-

ing a probabilistically randomized subset of the union of execution profiles

of all test cases in T, where each element in the union profile is included in

the combination at a certain (small) probability.

9.2.4 Transformation Operator
The authors employ “fitness-based crossover”; its basic functioning resem-

bles that of genetic heredity, where a new chromosome is produced as a

result of combining two parent chromosomes and passing down properties

from each onto the new child, always favoring the parent with the higher

fitness. The adopted genetic algorithm is a steady-state one, implying that

the transformation is applied across generations, in each generation creating

a single new child which replaces another individual in the population. To

conduct the crossover, two parents are randomly selected from the popula-

tion, and the child generated is one containing program elements from both

parents. To ensure improvement of the child’s fitness, more elements are

taken from the parent with higher fitness. That is, each bit in the child chro-

mosome is set to be equal to the same bit as one of its parents, favoring the

better-fitted one according to a set probability factor. In the end, the

resulting child replaces the parent with the worse fitness.

9.2.5 Acceptance Criterion
The fitness of a chromosome is evaluated to make two decisions: whether it

is fit enough to include in the general population once it is created, and

whether it is fit enough to be part of the final solution.

120 W. Masri and F.A. Zaraket

9.2.6 Stopping Criterion
Finally, the end of the generational evolution is determined by the number

of generations or iterations executed. Typically, as more generations are

used, more combinations are encountered and more defects are likely to

be covered.

9.2.7 Solution Set
At the conclusion of the genetic algorithm, the obtained solution set con-

tains all the encountered combinations with “suitable” fitness values,

ie, high-enough values. Also, all single elements (combinations of 1 element)

with appropriate fitness values are forcefully included so as to ensure that all

possible defect-revealing elements are part of the solution.

9.3 Experimental Work
The subject programs included: (a) the JTidy HTML syntax checker and

pretty printer, version 3; and (b) the NanoXML XML parser, version 3.

The test suite, failures, and defects for JTidy are described in Section 8.

NanoXMLwas downloaded along with its test suite from the SIR repository

(sir.unl.edu). The seeded faults were injected into a single version that failed

20 times due to 4 defects. Note that the proportions of failures were made

relatively low in order to mimic real-life situations.

In the study the following program elements were profiled: basic blocks

or statements (BB); basic block edges or branches (BBE); and def-use pairs

(DUP). Next the genetic algorithm is applied to generate the following: a

pool of BBcomb, a pool of BBEcomb, a pool ofDUPcomb, and a pool of ALLcomb,

where BBcomb is a combination of BBs, BBEcomb is a combination of BBEs,

DUPcomb is a combination of DUPs, and ALLcomb is a combination of BBs,

BBEs, andDUPs. The generated pools were used to apply the minimization

algorithm described in Section 8. Note that the values of Mfail chosen for

JTidy and NanoXML were 100 and 20, respectively.

9.3.1 Minimization Results
Table 10 presents the results for JTidy. For example, in the case of ALLcomb,

14.1% of the original test suite was needed to exercise all of the combinations

exercised by the original test suite, and these tests revealed all the defects rev-

ealed by the original test suite. Note that Section 8 showed that coverage of

slice pairs (SliceP) performed better than coverage of BB, BBE, and DUP;

this is why we are including the results of SliceP here for comparison. Also,

note that the data shown were obtained by averaging the results of 1000

121Coverage-Based Software Testing

different executions of the greedy selection algorithm, which explains why

the columns showing the number of selected tests and the number of rev-

ealed defects contain fractions. Fig. 13 compares the various techniques to

random sampling with respect to each technique’s average effectiveness for

revealing defects. The following observations are made from Fig. 13 and

Table 10:

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

%
 D

ef
ec

ts

% Tests

Random BB BBComb BBE BBEComb

DUP DUPComb All AllComb SliceP

Fig. 13 Test suite minimization results for JTidy compared to random sampling.

Table 10 Test Suite Minimization Results for JTidy (1000 Tests, 47 Failures, and
8 Defects)

Profile Type
Tests
Selected

% Tests
Selected

Failures
Selected

% Failures
Selected

Defects
Revealed

% Defects
Revealed

BB 53.0 5.3 9.44 20.1 4.4 55.0

BBcomb 95.7 9.6 16.2 34.4 5.2 65.6

BBE 65.1 6.5 13.1 27.8 6.3 78.7

BBEcomb 102.2 10.2 19.7 41.9 7.0 87.5

DUP 117.3 11.7 18.8 40.0 6.5 81.2

DUPcomb 141.3 14.1 22.0 46.8 7.0 87.5

ALLa 123.6 12.4 20.2 42.9 7.6 94.8

ALLcomb 141.1 14.1 22.5 47.8 8.0 100.0

SlicePa 267.3 26.7 30.0 63.8 8.0 100.0

aThese data originated from Section 8.

122 W. Masri and F.A. Zaraket

(1) All variations performed better than random sampling.

(2) BBcomb revealed 10.6% more defects than BB but selected 4.2% more

tests.

(3) BBEcomb revealed 8.8% more defects than BBE but selected 3.7% more

tests.

(4) DUPcomb revealed 6.3% more defects thanDUP but selected 2.4% more

tests.

(5) ALLcomb performed better than SliceP, since it: (a) revealed all defects, as

SliceP did; (b) selected 12.6% less tests; and (c) cost less to profile.

Concerning observations (2), (3), and (4), the additional cost due to the

selection of more tests might not be well justified, since it is apparent from

Fig. 1 that the rate of improvement is no better than it is for random sam-

pling. However, concerning observation (5), not only did ALLcomb perform

better than SliceP, but it is considerably less costly since it took 90 s on aver-

age per test to generate its profiles (ie, BBs, BBEs, and DUPs), whereas it

took 1200 s per test to generate the SliceP profiles (see Section 8).

Fig. 14 presents the results for NanoXML from which one can observe

that:

(1) Variations not involving combinations (BB, BBE, DUP, ALL) did not

perform any better than random sampling, whereas those involving

combinations (BBcomb, BBEcomb, DUPcomb, ALLcomb) performed notice-

ably better.

(2) Variations that involved combinations revealed all the defects, but at

relatively high cost, since over 50% of the tests were needed to be

executed.

0%

20%

40%

60%

80%

100%

20% 25% 30% 35% 40% 45% 50% 55% 60%

%
 D

ef
ec

ts

% Tests

Random BB BBComb BBE BBEComb

DUP DUPComb All AllComb

Fig. 14 Test suite minimization results for NanoXML compared to random sampling.

123Coverage-Based Software Testing

Finally, note that running the genetic algorithm and the greedy selection

algorithm might take several hours, depending on the sizes of the profiles

and the number of generations specified. This cost has to be factored in

when comparing the various techniques.

10. PBCOV: PROPERTY-BASED COVERAGE CRITERION

Empirical studies [34] have shown that existing coverage criteria

might characterize a given test suite as highly adequate, while it does not

actually reveal some of the existing defects. In other words, existing coverage

criteria, which are structural or logic in nature, are not always sensitive to the

presence of defects. In an attempt to address this issue, the authors inRef. [35]

presented PBCOV, a new coverage approach that comprises a property-

based coverage criterion, an associated metric, and a supporting tool.

Given a program with properties therein, static analysis techniques, such

as model checking, leverage formal properties to find defects. PBCOV is a

dynamic analysis technique that also leverages properties and is characterized

by the following: (a) it considers the state space of first-order logic properties

as the test requirements to be covered; (b) it uses logic synthesis to compute

the state space; and (c) it is practical, ie, computable, because it considers an

overapproximation of the reachable state space using a cut-based abstraction.

PBCOV was evaluated using programs with test suites comprising pass-

ing and failing test cases. First, coverage metrics values were computed for

PBCOV and structural criteria using the full test suites. Second, in order to

quantify the sensitivity of the metrics to the absence of failing test cases, the

values for all considered metrics using only the passing test cases were com-

puted. In most cases, the structural metrics exhibited little or no decrease in

their values, while the PBCOV metrics showed a considerable decrease.

This suggests that PBCOV is more sensitive to the absence of failing test

cases; ie, it is more effective at characterizing test suite adequacy to detect

defects and at revealing deficiencies in test suites.

10.1 Motivating Example
To illustrate the advantages of covering properties as opposed to structural

elements, a faulty implementation of selection sort [36] is used, shown

in Fig. 15. The function “sort()” takes as input an array “a” of size “n”;

“current” and “j” are the iterators of the outer and inner loops, respectively;

“lowestindex” holds the index of the minimum element so far in the

array; and “temp” is used to perform the swap on lines 13–18. Line 9 has

124 W. Masri and F.A. Zaraket

a defect as it erroneously compares “a[j]” to “a[current]” as opposed to “a

[lowestindex]”; thus, the inner loop does not always select the minimum.

But due to coincidental correctness [37,38] the defect at line 9 could be

exercised without leading to failure. For example, the test cases in test suite

T shown in Fig. 15 result in the sorted arrays in A of which none of them

leads to failure. T apparently seems reasonable as it consists of nonsorted

arrays of different sizes, a sorted array t1, a reverse-sorted array t2, and test

cases that test boundary conditions such as t7 and t8.

The authors computed the structural coverage metrics resulting from

executing T using GCOV and ATAC. GCOV computes four coverage

metrics, the percentage of executed statements, executed branches, branches

taken at least once, and invoked functions. ATAC measures basic block

coverage, predicate coverage, and two forms of def-use coverage, namely,

C-use and P-use coverage. A C-use is a use of the variable in a computation

such as an arithmetic expression, and a P-use is a use of the variable in a

predicate expression that evaluates to a Boolean value. The C-use measure

ensures that there is at least one path between the definition and a compu-

tational use of a variable. The P-use measure ensures that there is at least

one path between the definition of the variable and both the true and false

valuations of a predicate contain the variable [39].

T achieves full C-use coverage except for one infeasible def-use pair con-

sisting of the definition “lowestindex¼current” on line 6 and the use of

“lowestindex” in “a[current]¼ a[lowestindex]” on line 16. This def-use pair

is not feasible because the execution of the use is in contradiction with the

Fig. 15 Motivating example for PBCOV.

125Coverage-Based Software Testing

“if” condition predicate “lowestindex !¼ current” on line 14. T also

achieves full P-use coverage except for three infeasible P-use pairs. The first

is the definition “j ¼ current + 1” on line 7 and the “false” value of

the loop predicate “j < n” on line 8. This is infeasible since current is

bounded by “current < n-1” on line 4. The second infeasible pair is

the definition “lowestindex¼ current” on line 6 and the true value of pred-

icate “lowestindex !¼ current” on line 14. The last infeasible pair is the

definition “lowestindex ¼ j” on line 10 and the false value of the predicate

“lowestindex !¼ current” on line 14. This is infeasible since “j” is guaranteed

to be different than “current” as it starts at “current+1” on line 7 and only

gets incremented later. T achieves full coverage for all the other GCOV and

ATAC metrics. One could conclude that T is a deficient test suite since it

attained full coverage using traditional structural techniques, which moti-

vates the work on property-based coverage.

The user could introduce a property P in “sort()” specifying that at the

end of execution every two arbitrary neighboring elements a[k] and a[k+1]

within the bounds of the array must be in order:

P¼ forall k, 0� kð Þ^ k< n�1ð Þ! a k½ � � a k+1½ �

where P has three atomic predicate terms p1¼ (0�k), p2¼ (k<n�1) and

p3¼ (a[k]�a[k+1]), ie, P¼p1^p2!p3.

To enable the user to annotate code with properties, PBCOV provides

the macro PBCOV_ASSERT. At line 19, the user could then add the

following code:

for (int k= 0; k < n-1; k++) {

PBCOV_ASSERT (!(k >= 0 && k < n) jj (a[k+1] >= a[k]));

}

Note how a loop is needed to simulate the forall quantifier in P, and the

implication operator was substituted by its C language equivalent,

ie, p1^p2!p3 is substituted by ¬(p1^p2)_p3.

The state space ofP comprises eight states, seven ofwhich satisfyP, and one

{110}doesnot. In this failing state,k is in the correct rangeand satisfies (p1^p2),

but at least two of the array entries are not in order, thus violating p3.

PBCOV determines that the states {001}, {011}, {101}, {000}, {010},

and {100} are infeasible, and consequently, the reachable state space only

includes {111} where the property P passes, and {110} where it fails.

However, the test cases in T cover only one of the two reachable states;

specifically, test cases t1 through t6 cover state {111} and test cases t7 and t8

126 W. Masri and F.A. Zaraket

do not exercise P and thus do not cover any states. This deems T as deficient

since it does not cover {110}.

In addition, PBCOV automatically generates the test case¼h1, 0,�1, 0i
as an input that satisfies the state {110}. This test case reveals the bug as it

results in the erroneous output¼h0, �1, 0, 1i and should therefore be

included in test suite T.

10.2 PBCOV Design and Implementation

The diagram above illustrates the flow of PBCOV computation. Given a

program S and a set of properties P, PBCOV computes Si an instrumented

version of S, Ssym a partial symbolic representation of S, and Psym a symbolic

representation of P. PBCOV runs the test suite T against Si and computes

Pcover the set of covered states. PBCOV uses equivalence checking tech-

niques in model checking tools such as ABC [40] to compute the difference

between Psym and Pcover. Then PBCOV checks the feasibility of each smiss
state from Psym � Pcover against Ssym)Psym using a satisfiability modulo the-

ory solver such as Yices [41]. If the solver returns an inconclusive result, then

PBCOV over approximates Ssym by using a min-cut-based program slicing

technique. The overapproximation computes a cut in the control flow

diagram corresponding to Ssym and considers the variables crossing the cut

as free variables. This is an overapproximation since the free variables

may assume values that are not feasible. In case the solver returns a satisfiable

result, the result could be used as an additional test case and smiss is included in

the metric. In case the solver returns an unsatisfiable result, then smiss is

deemed unreachable and is not used in the denominator of the metric.

PBCOV uses CREST [42] to analyze and instrument S, it computes

ncov
trueto be the number of covered states that evaluate P to true, ncov

false to be

the number of covered states that evaluate P to false. It also computes nfeas
true

and ncov
false to be the number of feasible states that set P to true and false, respec-

tively. PBCOV defines the metric to be:

127Coverage-Based Software Testing

mpbcov ¼
log 1+ ntruecov + nfalsecov

� �

log 1+ ntruefeas + n
false
feas

� �

PBCOV uses the logarithmic scale to provide numbers that are in the

same order of typical coverage techniques. Typically an overapproximation

of the feasible state space is exponential in nature, while the number of cov-

ered states is polynomial in nature since test suites must be designed such that

testing terminates within reasonable time limits.

In practice, designers fix defects denoted by a nonzero value of ncov
false.

Consequently, all the covered states after fixing defects evaluate P to true.

Verification engineers then may want to estimate the property coverage

assuming that the property is true, for that PBCOV defines an optimistic/

confident version of the metric:

mcon
pbcov ¼

logð1+ ntruecov Þ
logð1+ ntruefeas Þ

The difference between the confident and the actual PBCOV metrics,

mpbcov� mcon
pbcov, quantifies the level of confidence of a test engineer when

he or she deems a test suite to be adequate. A large difference means that

he or she is too confident. The two metrics are good indicators in programs

where reachability analysis works well and concludes on significant cuts of

the program. However, the denominator grows exponentially where the

reachability analysis does not conclude except on small parts of the program,

and thus the magnitude values of the metrics may mislead the user to doubt

the test suite. In such cases, programmers should not use values of mpbcov as

absolute indicators; rather they should consider them relative to other

instances of mpbcov computed with different test suites.

10.3 Experimental Results
The authors applied PBCOV along with several structural coverage tech-

niques to five programs with property annotations. The programs are

TCAS, Red Black Binary Search Tree (RBBST), Linked List (LL), Memory

Manager (MMAN), and GZIP. Each program is associated with a test suite

and is seeded with a number of defects that are in general detectable by the

test suite. In total, the authors worked with 90 versions of the programs with

seeded defects. In order to evaluate PBCOV at detecting test suite adequacy

for detecting defects versus other structural coverage metric, the authors split

each test suite T into two disjoint sets Tpass and Tfail, where Tpass includes all

128 W. Masri and F.A. Zaraket

test cases that pass (do not cause a crash andmatches the program oracles) and

Tfail includes all test cases that fail (either cause a crash or does not match the

oracles). Then they computed the percentage decrease in coverage for each

coverage metric. The authors used GCOV and ATAC to compute the

structural coverage results.

They distinguished the following categories:

Category 1: In 13 of the 90 versions, PBCOV and other coverage metrics

showed no percentage decrease. The authors refined the properties to refer

to variables involved in the defects, and then the PBCOV metric showed a

significant decrease for 10 of the 13 versions. This shows that PBCOV’s

quality can be enhanced by enhancing the properties, while that is not pos-

sible for the other techniques.

Category 2: In 19 versions, PBCOV showed significant decrease, while the

other coverage metrics showed no change at all. This shows a serious prob-

lem in the effectiveness of structural coverage metrics at detecting the ade-

quacy of a test suite.

Category 3: In 8 versions, PBCOV showed a significant decrease, while some

coverage metrics showed a little decrease. Similar to category 2, this shows

the utility of PBCOV to highlight the deficiency in the test suite when other

metrics show a little change.

Category 4: In 17 versions, structural coverage metrics showed a significant

decrease. PBCOV also showed a significant decrease and showed more sen-

sitivity in most cases.

Category 5: In 4 versions, structural coverage metrics showed a little decrease,

while PBCOV showed no change at all. However, for these versions Tpass

already evaluates P to false which prompts the verification engineers to

fix the defect before looking at the coverage results. Tpass contains test cases

that cause the program to compute a wrong result but never display it, so the

test case passes the oracle check; however, it fails the property P.

A refinement of Tpass and Tfail to respect the property also would render this

category empty.

Category 6: It contains 29 versions where no structural or PBCOV change

occurred but where Tpass violated the properties, which is sufficient to alarm

the test engineer. These 29 versions show the utility of property annotations

to uncover defects.

In general, when properties exist, PBCOV is likely to perform better than

GCOV and ATAC. In most cases, the structural coverage elements behave

similarly; this is well explained by the subsumption relationship between

them and by the relative maturity of the used test suites.

129Coverage-Based Software Testing

The main threat to PBCOV is that it requires programs to be annotated

with properties. In the absence of meaningful properties, which is typical in

software programs, PBCOV is not applicable.

In the presence of properties, PBCOV depends on the quality of the

properties. Also the overapproximation of the state space provides no tight

bound to give the testing engineer a feeling of being done with testing.

11. UCov: USER-DEFINED COVERAGE CRITERION

The goal of regression testing is to ensure that the behavior of existing

code, believed correct by previous testing, is not altered by new program

changes. The authors in Refs. [43,44] argue that the primary focus of regres-

sion testing should be on code associated with: (a) earlier bug fixes; and

(b) particular application scenarios considered to be important by the devel-

oper or the tester. Since existing coverage criteria do not enable such focus,

eg, 100% branch coverage does not guarantee that a given bug fix is

exercised or a given application scenario is tested; they stress the need for

a new and complementary coverage criterion in which the user can define a

test requirement characterizing a given behavior to be covered as opposed to choos-

ing from a pool of predefined and generic program elements.

The authors propose this new methodology and call it UCov wherein a

test requirement is an execution pattern of program elements, and possibly

predicates, that a test case must satisfy or cover. The proposed criterion is not

meant to replace existing criteria but to complement them as it focuses the

testing on important code patterns that could go untested otherwise.

UCov supports test case intent verification. For example, following a bug fix,

the testing team may augment the regression test suite with the test case that

revealed the bug. Evidently, this new test case induces an execution pattern

associated with the bug; however, it might become obsolete due to code

modifications not related to the bug. But UCov, based on the test case

and a user-defined test requirement characterizing the bug, would:

(a) Detect whether the test requirement was satisfied or not.

(b) Determine whether test case intent verification passed or failed.

(c) Deem the test suite deficient in case test intent verification failed, thus

suggesting that a new test case that satisfies the requirement needs to be

generated.

It is also worth mentioning that the approach paves the way for test case intent

preservation. For example, in the scenario above, a failed verification could

be followed by automated test case generation whose aim is to satisfy the

user-defined test requirement and thus preserve the intent of the test case.

130 W. Masri and F.A. Zaraket

Developers and testers leverage use case scenarios when designing test

cases. These use case scenarios develop into initial test suites and program

implementations. During maintenance, the introduction of new features

results in augmenting the test suites with test cases that cover the added fea-

tures and associated code modifications. The same applies to reported bugs

and corresponding fixes. Intuitively, UCov documents the relation between

the test cases and the corresponding code modifications in a manner that

enables test case intent verification and preservation. Currently, the docu-

mentation of that relation often exists in the form of modification request

records in source control repositories. UCov provides an Eclipse plugin,

calledTRSpec, to allow the user to express test case intent, ie, to specify user-

defined test requirements using a friendly graphical interface.

At first, it might appear that UCov is simply meant to help cover more

complex test requirements comprising some patterns or combinations of

existing program elements. But in fact, its main goal is to cover behaviors

as opposed to generic structural program elements, and to couple tests with

intents to be verified and preserved.

The main advantages of UCov to the software maintenance process are

described below:

• In UCov, a test case t that was coupled with a bug fix, a feature, or some

scenario of interest to the tester/developer, is intended to verify an

expected (correct) behavior of the application. In case t becomes obso-

lete, that expected behavior would go unverified, but due to UCov the

tester will learn that t needs to be replaced.

• Evidently, even full coverage achieved by existing structural coverage

criteria does not establish that all (or any) of the scenarios of a given algo-

rithm are tested. Testers and/or developers could couple each scenario of

an algorithm with a test case, thus relying onUCov to ensure coverage of

these scenarios. This enables validation testingwhose aim is to exercise the

functionality of the SUT.

• A bug fix could become faulty due to other code changes (ie, a bug was intro-

duced in the bug fix). UCov can detect that the test requirement associ-

ated with the bug fix is not satisfied, which calls for revisiting the bug fix

and test suite.

• Bug resurrection happens when faulty code that was fixed, gets introduced again.

Typically, this might happen due to the uncoordinated access of a file in a

source control system by more than one developer. UCov ensures the

coverage of the test requirement associated with the bug fix and thus

uncovers the resurrecting bug. Without UCov, resurrecting bugs might

escape typical structural coverage-based testing.

131Coverage-Based Software Testing

The authors in Refs. [43,44] implemented this methodology for the Java

platform in the following tool set:

(a) TRSpec, an Eclipse plugin that enables users to easily define test

requirements.

(b) TRCheck, a tool that checks whether the test requirements are satisfied

(during test suite execution).

(c) TRMigrate, a tool that migrates test requirements to subsequent versions

of a given program.

Next, we provide definitions and notation for specifying test require-

ments. Then we motivate the need for UCov by walking through three

examples.

11.1 Definitions and Notation
This section provides definitions for entities relevant to UCov, and notation

for specifying test requirements.

Definition—A basic test requirement (btr) is a logical expression over a

set of program elements and logical operators such as negation (¬), conjunc-
tion (^), and disjunction (_). The semantics of a btr describe an execution

of the program elements. For example, the btr [(s1 _ b1) ^ (¬dup1)]btr
involves the set of program elements {s1, b1, dup1} and is satisfied if:

(a) statement s1 or branch b1 did execute and (b) definition-use pair dup1
did not execute.

Definition—A test requirement describes an execution pattern of program

elements and possibly predicates that a test case must satisfy or cover. It is a

basic test requirement, a conditional test requirement, a sequential test requirement

(defined below), or a repeated test requirement.

• Definition—A conditional test requirement (ctr) is a test requirement

comprising a test requirement tr, and a predicate p specifying a state

of some program variables. For a conditional test requirement to be

satisfied, tr should be satisfied, and p should evaluate to true immedi-

ately after. For example, the conditional test requirement [[s1 ^ b1]btr,

x > y]ctr requires that statement s1 and branch b1 be executed and,

when that happens, x be strictly greater than y.

• Definition—A sequential test requirement (str) is a test requirement

composed of a sequence of at least two test requirements that must

be satisfied one after the other. For example, the sequential test

requirement [<[b1]btr, [b2]btr, [b3_ s1]btr>]str requires that branches

b1 and b2 be sequentially executed, followed by b3 or s1.

132 W. Masri and F.A. Zaraket

• Definition—A repeated test requirement (rtr) is a test requirement com-

prising a test requirement tr, and a range indicating the number of

times it should be repeated. For example, the repeated test require-

ment [[s1^b1]btr, 5, 1000]rtr requires that statement s1 and branch b1
be executed at least 5 times and at most 1000 times. In case one or

both of the bounds do not matter, a “don’t care” symbol could be

specified; eg, [[s1]btr, 100, _]rtr requires that statement s1 be executed

at least 100 times.

boolean terminateEmployee(int averageSales, int salary)

// P1

int raise = 0;

if (averageSales >= 1000000) {

raise = 30000;

} else if (averageSales >= 100000) {

raise = 10000;

} else if (averageSales >= 10000) {

raise = 1000;

}

salary = salary + raise;

//Bug: should be if (salary> 200000)
s1: if (salary >= 200000) {
s2: return true;

} else {
s3: return false; }

// P2

int raise = 0;

if (averageSales >= 1000000) {

raise = 30000;

} else if (averageSales >= 100000) {

raise = 10000;

} else if (averageSales >= 10000) {

raise = 1000;

}

salary = salary + raise;

//Bug is fixed
s1: if (salary > 200000) {
s2: return true;

} else {
s3: return false; }

// P3
if (averageSales > 3000000)

return false; // Added code
if (averageSales < 1000)

return true; // Added code

int raise = 0;

if (averageSales >= 1000000) {

raise = 30000;

} else if (averageSales >= 100000) {

raise = 10000;

} else if (averageSales >= 10000) {

raise = 1000;

}

salary = salary + raise;

s1: if (salary > 200000) {
s2: return true;

} else {
s3: return false;}

// P4

if (averageSales > 3000000)

return false;

if(averageSales < 1000)

return true;

int raise = 0;

if (averageSales >= 1000000) {

raise = 30000;

} else if (averageSales >= 100000) {

raise = 10000;

} else if (averageSales >= 10000) {

raise = 1000;

}

salary = salary + raise;

s1: if (salary>= 200000) { // Resurrected bug
s2: return true;

} else {
s3: return false;}

133Coverage-Based Software Testing

11.2 Motivation
The premise behindUCov is that some tests are more important than others,

and that current coverage criteria are not well suited to making sure that

important tests not only are present but also continue to satisfy their intended

function as code evolves. We now walk through three examples motivating

UCov. The first demonstrates a case involving a bug fix, and the other two

involve scenarios of significance.

11.2.1 Example 1—Testing a Bug Fix
Consider a programP1, an associated test suiteT1, and a reported bug thatwas

revealed by tbug, a test case not present inT1. The development team fixes the

bug to produce P2 and couples tbugwith a test requirement that characterizes

the bug execution. The testing team augments T1 with tbug to form T2, the

regression test suite for P2. Subsequently, P2 is modified to add a feature or

to refactor the code, thus resulting inP3.Assume that themodification renders

tbug obsolete as it ceases to satisfy its test requirement. Consequently, T2

becomes inadequate, which calls for replacing tbug with a new test case.

As a concrete example, consider the function boolean

terminateEmployee(int averageSales, int salary) which determines whether an

employee should be terminated or not as follows: (a) it computes the next

annual raise based on the average sales amount; (b) computes the new salary

including the raise; and (c) recommends termination if the new salary

exceeds some threshold (hardcoded to $200,000).
A faulty implementation P1 of terminateEmployee() is shown below. The

bug is in statement s1 which induces a failure when the computed salary is

exactly 200000. An example failing test case would be tbug:{(4000000,

170000), false}, where averageSales is 4000000, current salary is 170000,

and the return value is true (expected to be false). Also, consider test suite

T¼{t1, t2, t3, tbug}, where t1:{(1500000, 100000), false}, t2:{(130000,

50000), false}, and t3:{(11000, 35000), false}. Note how T achieves full

statement coverage and contains tbug as the only failing test case.

Due to tbug the developers fix the bug in P2, and couple tbug with a test

requirement that characterizes the bug execution, specifically, tbug is coupled

with trbug ¼ [<[[s1]btr, salary ¼¼ 200000]ctr, [s3]btr>]str (as one possibility).

Meaning, in order for the intent of trbug to be preserved, salary should have

a value of 200,000 at s1, and s3 should be executed following it.

Now assume that due to requirements changes, P2was modified to yield

P3. Particularly, two conditional statements were added at the beginning of

the function to satisfy the following requirements: (1) if the average sales

134 W. Masri and F.A. Zaraket

amount was exceptionally high, do not terminate the employee no matter

how high the salary is; and (2) if the average sales amount was exceptionally

low, terminate the employee no matter how low the salary is.

These changes have no effect on the execution of t1, t2, or t3, but will

render tbug obsolete. That is, the intent of tbug is not preserved in P3 as trbug
is not satisfied anymore. To remedy this problem, which would be alerted by

UCov, the testing team replaces tbug with tbug
0:{(2000000, 170000), false}

which satisfies trbug¼ [<[[s1]btr, salary¼¼200000]ctr, [s3]btr>]str. Conse-

quently, the updated test suite becomes T¼{t1, t2, t3, tbug
0}.

Furthermore, assume that the bug resurrected in P4, which is not very

uncommon in practice. Note how tbug
0 will reveal the bug in P4. Whereas

given a test suite that achieves full coverage will not necessarily do so. For

example, test suite T0 ¼{t1, t2, t3, t4, t5} exhibits 100% statement/branch

coverage but does not reveal the bug in P4, where t1:{(1500000,

180000), true}, t2:{(130000, 50000), false}, t3:{(11000, 35000), false}, t4:

{(5000000, 150000), false}, and t5:{(900, 20000), false}.

Finally, one may argue that to verify that the intent of a test case is sat-

isfied it suffices to check whether its expected output is observed. This does

not work in the above example since executing P3 with tbug:{(4000000,

170000), false} does yield the correct output, while the bug fix is not

exercised.

11.2.2 Example 2—Testing Scenarios of an Algorithm
Typically, algorithms are presented while stressing the prime scenarios they

support, which we believe should all be tested for quality assurance. Noting

that even full coverage achieved by existing structural coverage criteria does

not establish that all (or any) of the scenarios of an algorithm are tested, we

advocate UCov as an effective solution to this task. Intuitively, each docu-

mented scenario (or case) associated with the algorithm describes at least one

test requirement (execution pattern) that should be coupled with designated

test cases. We illustrate the usage of UCov in testing the algorithm for delet-

ing a node in a binary search tree.

The algorithm in Fig. 16 presented in Ref. [45] considers four cases

concerning the node z to be deleted:

Case 1: If z has no children, then it is replaced by NIL.

Case 2: If z has only one child, then it is replaced by that child.

Case 3: If z has two children, then it is replaced by its successor, which is

the leftmost node in the subtree rooted at the right child of z. In this case,

the successor of z (say y) has no right child. That is, ywould be a leaf and

135Coverage-Based Software Testing

thus deleting zwould be achieved by replacing the contents of z by those

of y and replacing y with NIL.

Case 4: Similar to Case3, z has two children and is replaced by its

successor. However, here y has a right child, and the contents of z are

replaced by those of y but instead of replacing y with NIL, it is replaced

by its right child.

Fig. 17 depicts a test suite T comprising five test cases t1, t2, t3, t4, and t5.

Table 11 details the individual and cumulative branch coverage information

for each of the test cases. As shown, T achieves 100% branch coverage.

Although not obvious in Table 11, T also satisfies MC/DC coverage [46].

The test requirements associated with each of the algorithm’s scenarios

are also shown at the bottom of Table 11, along with T’s coverage

BST-DELETE(T, z)
Input: Binary Search Tree (T), pointer to the node to be deleted (z)
Output: Binary Search Tree (T’) obtained from T by deleting z

1. if left[z] = NIL or right[z] = NIL
2. then y ← z

3. else y ← TREE-SUCCESSOR(z)

4. if left[y] ≠ NIL

5. then x ← left[y]

6. else x ← right[y]

7. if x ≠ NIL

8. then p[x] ← p[y]

9. if p[y] = NIL

10. then root[T] ← x

11. else if y = left[p[y]]

12. then left[p[y]] ← x

13. else right[p[y]] ← x

14. if y ≠ z

15. then key[z]← key[y]

16. copy y’s satellite data into z

Fig. 16 Pseudo-code for deleting a node in a BST.

6

t4

z

5

1 8

t1

z

5

t2

z

5

1

t3

z

5

1 8

t5

z

5

8

Fig. 17 Test suite T¼ {t1, t2, t3, t4, t5}.

136 W. Masri and F.A. Zaraket

information. Test case t1 covers the test requirement of Case 1. Test cases t2
and t5 satisfy the test requirement ofCase 2. And both t3 and t4 cover the test

requirement of Case 3, whereas Case4 is left untested; ie, none of the tests

cover test requirement [<[s3]btr, [s6]btr, [s8]btr>]str.

This example demonstrates how applying our coverage criterion would

deem test suite T deficient despite the fact that it satisfied full branch cov-

erage and the stronger MC/DC coverage. In order to test all four scenarios

using UCov, the user would: (1) specify their four respective test require-

ments shown at the bottom of Table 1; and (2) design at least one test case

that covers it for each test requirement.

One may argue that refactoring the code in Fig. 16 into four methods

each corresponding to one of the four cases at hand would allow simple cov-

erage criteria to reveal whether some scenario went untested. This is true,

but unfortunately it cannot be assumed that developers will always break

Table 11 Coverage Information for Test Suite T
t1 t2 t3 t4 t5 T

Branches S1!S2 ✓ ✓ ✗ ✗ ✓ ✓

S1!S3 ✗ ✗ ✓ ✓ ✗ ✓

S4!S5 ✗ ✓ ✗ ✗ ✗ ✓

S4!S6 ✓ ✗ ✓ ✓ ✓ ✓

S7!S8 ✗ ✓ ✗ ✗ ✓ ✓

S7!S9 ✓ ✗ ✓ ✓ ✗ ✓

S9!S10 ✓ ✓ ✗ ✗ ✓ ✓

S9!S11 ✗ ✗ ✓ ✓ ✗ ✓

S11!S12 ✗ ✗ ✗ ✓ ✗ ✓

S11!S13 ✗ ✗ ✓ ✗ ✗ ✓

S14!S15 ✗ ✗ ✓ ✓ ✗ ✓

S14!END ✓ ✓ ✗ ✗ ✓ ✓

Prime Scenarios Execution Patterns (TR)

Case 1 [<[s2]btr, [s6]btr, [[s7]btr, x¼¼NIL]ctr>]str ✓ ✗ ✗ ✗ ✗ ✓

Case 2 [<[s2]btr, [s8]btr>]str ✗ ✓ ✗ ✗ ✓ ✓

Case 3 [<[s3]btr, [s6]btr, [[s7]btr, x¼¼NIL]ctr>]str ✗ ✗ ✓ ✓ ✗ ✓

Case 4 [<[s3]btr, [s6]btr, [s8]btr>]str ✗ ✗ ✗ ✗ ✗ ✗

137Coverage-Based Software Testing

down their code with scenarios in mind. Also, recall that the pseudo-code in

Fig. 16 was drawn from a highly regarded source which makes it likely that a

developer would implement it as is.

11.2.3 Example 2—Testing Inactive Clauses
This example demonstrates the utility ofUCov in testing a scenario involving

inactive clauses. Note that UCov is not designed to specifically test inactive

clauses, but this example is meant to show the flexibility and power ofUCov.

The scenario discussed here is described in Ref. [1]. Consider the func-

tion bool reset() that is designed to control the shutdown system in a nuclear

reactor:

boolean reset()

{

s1: boolean result = false;

s2: if (override jj valveClosed)
s3: result = true;

s4: return result;

}

When the system is in “override” mode, the state of a particular valve

(“open” vs “closed”) should not affect the decision to reset the system.

A conservative approach would require testing reset() in override mode

for both positions of the valve. Using UCov, this could be achieved by sat-

isfying the following two test requirements:

[[s4]btr, override==true^valveClosed==true^result==true]ctr

[[s4]btr, override==true^valveClosed==false^result==true]ctr

On the other hand, each of the test suites below satisfies some established

coverage criterion without actually checking whether valveClosed is inactive:

(1) Statement and branch coverage are both satisfied by:

{ (override=true, valveClosed=false, result=true),

(override=false, valveClosed=false, result=false) }

(2) Clause coverage is satisfied by:

{ (override=true, valveClosed=true, result=true),

(override=false, valveClosed=false, result=false) }

(3) MC/DC coverage is satisfied by:

{ (override=true, valveClosed=false, result=true),

(override=false, valveClosed=false, result=false),

(override=false, valveClosed=true, result=true) }

Of course combinatorial coverage does test whether clause valveClosed is

inactive, but it requires four tests as opposed to two.

138 W. Masri and F.A. Zaraket

12. CONCLUSION

Early coverage-based software testing techniques involved basic test

requirements such as functions, statements, branches, and predicates,

whereas recent techniques involved (1) test requirements that are complex

code constructs such as paths, program dependences, and information flows;

or (2) test requirements that are not necessarily code constructs such as pro-

gram properties, and user-defined test requirements. This chapter described

these two generations of techniques and compared them when applicable. It

also provided preliminary background and definitions and described relevant

work such as approaches to execution profiling.

Most practitioners rely solely on code coverage to assess the quality of

software. However, we recognize several limitations to such strategy:

(1) Coverage techniques are inherently unable to reveal faults that are due

to missing conditionals or omitted code.

(2) Even 100% coverage of the most complex test requirements is no guar-

antee that the code is bug free. This is the case because test requirements

are not likely to characterize all program behaviors or use cases.

(3) Coverage is a useful tool for finding untested parts of the code, but it is

of little use as a numeric statement of how good your tests are; as asserted

by Fowler [47]. That is, even though low levels of coverage (say below

50%) are a sign of trouble, high levels do not necessarily mean that the

software is of high quality.

(4) Most organizations require a target level of coverage, which might

backfire. This was argued by Marick [48]:

(a) “The problem with this approach is that people optimize their performance

according to how they’re measured. You can get 85% coverage by looking at

the coverage conditions, picking the ones that seem easiest to satisfy, writing

quick tests for them, and iterating until done.” That is, testers might be

implicitly encouraged to spend their precious time writing quick

tests that increase coverage as opposed to writing tests that might

reveal faults. In other words, targeting a level of coverage might

distract the testers from developing test cases that really matter [47].

(b) In some organizations where the target level of coverage is at set

point such as Marick’s 85%, it was observed in Ref. [48] that a

sizable number of testers achieved around 85% but not much

more. This happened, not because these testers were unable to find

additional tests that might increase coverage or reveal more faults,

139Coverage-Based Software Testing

but because once they reached the required level, they stopped

testing. The reason is they felt that their job was done [48].

(c) Keep in mind that setting a target level of coverage has a clear

benefit as it gives the testers a point where they can stop testing,

especially that testing is a pressing job that typically comes at the

end of the time to market race. Since exhaustive testing is impos-

sible and time to market is a very sensitive factor in the success of a

software release, testers consider reaching a coverage target as a

good stopping point for testing, which is otherwise undefined.

To finalize, the software testing community believes that the use of coverage

criteria makes it more likely that faults are found and provides informal assur-

ance of the reliability of the software. This is not a scientifically supported

proposition, but it is the best out there [1]. On a more positive note, con-

sidering the emerging coverage criteria that complement existing structural

coverage criteria, it appears that the path to formalizing the science of testing is

getting clearer and shorter.

REFERENCES
[1] P. Ammann, J. Offutt, Introduction to Software Testing, first ed., Cambridge University

Press, Cambridge, UK, 2008. ISBN-10: 0521880386; ISBN-13: 978-0521880381.
[2] P. Ammann, A. Jefferson Offutt, H. Huang, Coverage criteria for logical expressions,

ISSRE (2003) 99–107.
[3] R. Abou-Assi, W. Masri, Identifying failure-correlated dependence chains, in: First

International Workshop on Testing and Debugging, TeBug, Berlin, 2011.
[4] W. Masri, Fault localization based on information flow coverage, J. Softw. Test. Verif.

Reliab. 20 (2) (2010) 121–147.
[5] W. Masri, A. Podgurski, D. Leon, An empirical study of test case filtering techniques

based on exercising information flows, IEEE Trans. Softw. Eng. 33 (7) (2007) 454.
[6] W. Masri, Exploiting the empirical characteristics of program dependences for

improved forward computation of dynamic slice, Emp. Softw. Eng. 13 (2008) 369–399.
[7] W. Masri, A. Podgurski, Algorithms and tool support for dynamic information flow

analysis, Inf. Softw. Technol. 51 (2009) 395–404.
[8] W. Masri, H. Halabi, An algorithm for capturing variables dependences in test suites,

J. Syst. Softw. 84 (7) (2011) 1171–1190.
[9] W. Masri, R. Abou Assi, M. El-Ghali, Generating profile-based signatures for online

intrusion and failure detection, Inf. Softw. Technol. 56 (2) (2014) 238–251.
[10] W. Masri, J. Daou, R. Abou-Assi, State profiling of internal variables, in: Regression/

ICST 2014, Cleveland, 2014.
[11] The Byte Code Engineering Library (BCEL), The Apache Jakarta Project, http://

jakarta.apache.org/bcel. Apache Software Foundation 2003.
[12] ASM, http://asm.ow2.org/, last accessed January 2016.
[13] Pin, https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-

tool, last accessed January 2016.
[14] T. Ball, J.R. Larus, Efficient path profiling, Proc. MICRO (1996) 46–57.
[15] T. Ball, J.R. Larus, Optimally profiling and tracing programs, ACM Trans. Program.

Lang. Syst. 16 (4) (1994) 1319–1360.
[16] G. Fraser, A. Arcuri, EvoSuite: automatic test suite generation for object-oriented

software, in: SIGSOFT FSE, 2011, pp. 416–419.

140 W. Masri and F.A. Zaraket

http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0005
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0005
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0010
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0010
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0015
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0015
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0020
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0020
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0025
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0025
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0030
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0030
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0035
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0035
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0040
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0040
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0045
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0045
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0050
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0050
http://jakarta.apache.org/bcel
http://jakarta.apache.org/bcel
http://jakarta.apache.org/bcel
http://asm.ow2.org/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0055
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0060
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0060
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0065
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0065

[17] J.C. King, Symbolic execution and program testing, Commun. ACM 19 (7) (1976)
385–394.

[18] K. Sen, D. Marinov, G. Agha, CUTE: a concolic unit testing engine for C, in: ESEC/
SIGSOFT FSE, 2005, pp. 263–272.

[19] P. Godefroid, P. de Halleux, A.V. Nori, S.K. Rajamani, W. Schulte, N. Tillmann,
M.Y. Levin, Automating software testing using program analysis, IEEE Softw. (2008).

[20] B. Korel, A dynamic approach of test data generation, in: IEEE Conference on Software
Maintenance, San Diego, 1990, pp. 311–317.

[21] B. Korel, Dynamic method of software test data generation, Softw. Test. Verif. Reliab.
2 (4) (1992) 203–213.

[22] P. Godefroid, M.Y. Levin, D.A. Molnar, SAGE: whitebox fuzzing for security testing,
ACM Queue 10 (1) (2012) 20.

[23] P. Godefroid, N. Klarlund, K. Sen, DART: directed automated random testing,
in: PLDI, 2005, pp. 213–223.

[24] N. Tillmann, J. de Halleux, PEX—white box test generation for .NET, Tests Proofs
(2008).

[25] A.V. Nori, S.K. Rajamani, S.D. Tetali, A.V. Thakur, The YOGI project: software
property checking via static analysis and testing, in: TACAS, 2009.

[26] T. Ball, S.K. Rajamani, Automatically validating temporal safety properties of interfaces,
in: SPIN 2001, Lecture Notes on Computer Science (LNCS), 2001.

[27] C. Cadar, D. Dunbar, D.R. Engler, KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs, in: OSDI, 2008, pp. 209–224.

[28] D.S. Hochbaum, Approximation Algorithms for NP-Hard Problems, PWS Publishing,
Boston, MA, 1997.

[29] H. Agrawal, J. Horgan, Dynamic program slicing, SIGPLAN Notices 25 (6) (1990)
246–256.

[30] W. Masri, N. Nahas, A. Podgurski, Memoized forward computation of program slices,
in: 17th IEEE International Symposium on Software Reliability Engineering (ISSRE
2006), Raleigh, NC, USA, 2006, pp. 23–32.

[31] J. Farjo, R. Abou Assi, W. Masri, Reducing execution profiles: techniques and benefits,
Softw. Test. Verif. Reliab. 25 (2) (2015) 115–137.

[32] W. Masri, M. El-Ghali, Test case filtering and prioritization based on coverage of
combinations of program elements, in: Seventh International Workshop on Dynamic
Analysis, WODA, Chicago, IL, 2009.

[33] W. Masri, R. Abou-Assi, M. El-Ghali, N. Fatairi, An empirical study of the factors that
reduce the effectiveness of coverage-based fault localization, in: InternationalWorkshop
on Defects in Large Software Systems, DEFECTS, Chicago, IL, 2009.

[34] L. Inozemtseva, R. Holmes, Coverage is not strongly correlated with test suite effec-
tiveness, in: ICSE, 2014, pp. 435–445.

[35] K. Fawaz, F.A. Zaraket, W. Masri, H. Harkous, PBCOV: a property-based coverage
criterion, Softw. Qual. J. 23 (1) (2015) 171–202.

[36] A. Barr, Find the Bug: A Book of Incorrect Programs, Addison-Wesley Professional,
2004.

[37] W. Masri, R. Abou-Assi, Cleansing test suites from coincidental correctness to enhance
fault-localization, in: Third International Conference on Software Testing, Verification
and Validation, ICST, Paris, France, 2010.

[38] W. Masri, R. Abou Assi, Prevalence of coincidental correctness and mitigation of its
impact on fault-localization, ACM Trans. Softw. Eng. Methodol. 23 (1) (2014) 8.

[39] S. Rapps, E.J. Weyuker, Data flow analysis techniques for test data selection,
in: International Conference on Software Engineering, Los Alamitos, CA, USA, 1982,
pp. 272–278.

[40] ABC, ABC: Berkeley Logic Synthesis and Verification Group. A System for Sequential
Synthesis and Verification, 2007. http://www.eecs.berkeley.edu/alanmi/abc/release
70930.

141Coverage-Based Software Testing

http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0070
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0070
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0075
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0075
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0080
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0080
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0085
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0085
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0090
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0090
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0095
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0095
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0100
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0100
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0105
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0105
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0110
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0110
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0115
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0115
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0120
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0120
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0125
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0125
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0130
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0130
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0135
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0135
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0135
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0140
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0140
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0145
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0145
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0145
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0150
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0150
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0150
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0155
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0155
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0160
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0160
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0165
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0165
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0170
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0170
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0170
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0175
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0175
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0180
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0180
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0180
http://www.eecs.berkeley.edu/alanmi/abc/

[41] B. Dutertre, L.M.D. Moura, A fast linear-arithmetic solver for dpll(t), Comput. Aid.
Verif. (2006) 81–94.

[42] J. Burnim, K. Sen, Heuristics for scalable dynamic test generation, in: International
Conference on Automated Software Engineering, 2008, pp. 443–446.

[43] E. Shaccour, F.A. Zaraket, W. Masri, Coverage specification for test case intent pres-
ervation in regression suites, in: ICST Workshops, 2013, pp. 392–395.

[44] R.A. Assi, F.A. Zaraket,W.Masri, UCov: a user-defined coverage criterion for test case
intent verification, CoRR (2014). abs/1407.3091.

[45] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, third ed., The
MIT Press, Boston,MA,USA, 2009. ISBN-10: 0262033844; ISBN-13: 978-0262033848.

[46] J. Joseph Chilenski, S.P. Miller, Applicability of modified condition/decision coverage
to software testing, Softw. Eng. J. 9 (5) (1994) 193–200.

[47] M. Fowler, TestCoverage, http://martinfowler.com/bliki/TestCoverage.html, last
accessed January 2016.

[48] B. Marick, How to misuse code coverage, 1999. http://www.exampler.com/testing-
com/writings/coverage.pdf.

ABOUT THE AUTHORS

Wes Masri is an Associate Professor in the

ECEDepartment at the AmericanUniversity

of Beirut. His research interest is in software

engineering, primarily in software testing and

analysis. He received his PhD in Computer

Engineering from Case Western Reserve

University in 2005, M.S. from Penn State

in 1988, and B.S. also from Case Western

Reserve University in 1986. He also spent

over 15 years in the U.S. software industry

mainly as a software architect and developer.

Some of the industries he was involved in

include medical imaging, middleware, telecom, genomics, semiconductor,

document imaging, and financial.

Fadi Zaraket is an Assistant Professor in the

ECEDepartment at TheAmericanUniversity

of Beirut. He received his PhD in ECE from

UT Austin in December 2007. He received

hisMasters andBachelor degrees inCCE from

The American University of Beirut in Febru-

ary 2001 and July 1996, respectively. He

worked at IBM on logic verification and

debugging tools between June 2001 and

December 2008. He also worked at Sun

Microsystems and Santa Cruz Operations on

kernel development between April 1999 and June 2001.

142 W. Masri and F.A. Zaraket

http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0190
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0190
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0195
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0195
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0200
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0200
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0205
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0205
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0210
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0210
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0215
http://refhub.elsevier.com/S0065-2458(16)30027-4/rf0215
http://martinfowler.com/bliki/TestCoverage.html
http://www.exampler.com/testing-com/writings/coverage.pdf
http://www.exampler.com/testing-com/writings/coverage.pdf

AUTHOR INDEX

A
Abella, F., 22

Abou-Assi, R., 89, 110–111, 118, 124–125
Abraham, A., 22

Acharya, M., 61

Agha, G., 99–102
Agmon Ben-Yehuda, O., 13

Agrawal, H., 59, 62, 104

Aiken, A.S., 45

Ajila, S.A., 22

Akansu, A.N., 8

Akhlaghi, S., 61

Ali-Eldin, A., 8–9, 22
Almezen, H., 58

Alourani, A., 2–6, 12–23, 32–48
Amarasinghe, S., 46

Amato, N.M., 46

Ammann, P., 68, 80–82, 138, 140
Ammons, G., 35

Anderson, J.W., 47

Andrzejak, A., 19–20
Anido, R., 68

Ansel, J., 46

Arafeen, M., 63–64, 66–67
Arcuri, A., 98–99
Arlt, S., 70

Armbrust, M., 3, 17

Arul, M., 63–64
Assi, R.A., 130, 132

Avesani, P., 64

Avresky, D.R., 19

B
Bacigalupo, D., 22

Bai, X., 6

Balakrishnan, H., 22

Ball, T., 35, 93, 95, 97–98, 102–103
Barr, A., 124–125
Bates, S., 59

Bean, K., 8

Beatty, D., 32–33
Benatallah, B., 7, 12–14
Ben-Yehuda, M., 13

Bertolino, A., 68

Bianchini, R., 22

Bible, J., 58

Bigus, J., 22

Bikas, Md.A.N., 2–6, 12–23, 32–48
Blue, D., 69–70
Bobroff, N., 19

Bode, A., 19

Bodık, P., 22

Brace, K., 32–33
Brandić, I., 7, 12–14
Braud, R., 47

Brebner, P.C., 5, 13–14, 18–20
Breitgand, D., 8

Briand, L.C., 58–59, 61–62
Bryant, R.E., 32–33
Bryce, R., 65

Buford, J.F., 22

Burnim, J., 47, 127–128
Buyya, R., 4, 6–9, 17–20, 22

C
Cadar, C., 103

Calheiros, R.N., 8, 17–18, 22
Cao, Z., 22

Carlson, R., 64

Carrera, D., 8–9
Caşcaval, C., 47

Castillo, C., 19

Catal, C., 56, 64–65
Cavalli, A., 68

Chaisiri, S., 20–21
Chana, I., 22

Chandra, A., 22

Chang, E., 12–13
Chapin, N., 32

Charalambous, T., 22

Chattopadhyay, S., 45–46
Chen, B., 6

Chen, H., 4, 22

Chen, T., 47

Chen, T.Y., 68

Chen, Y., 58

Chen, Y.F., 57

143

Chen, Z., 22

Cheng, X., 22

Cherkasova, L., 22

Cho, K., 32–33
Chohan, N., 19

Choi, B., 63

Chong, L.K., 45–46
Chu, C., 62–65
Chun, B.G., 45–46
Ciciani, B., 19

Cobb, J., 60–61
Cohen, M., 63, 65

Colbourn, C., 65

Conte, T.M., 45–46
Copil, G., 14–15
Coppa, E., 32–33, 45–46
Cormen, T., 135–136
Cosenza, B., 46–47
Costa, G., 19

Coutinho, E.F., 6–7, 13, 15

D
Dai, X., 47

Dailey, M.N., 8–9
Daou, J., 89

Dawoud, W., 22

De Bona, L.C.E., 7–10, 12–14, 17
de Carvalho Sousa, F.R., 6–7, 13, 15
de Halleux, J., 102–103
de Halleux, P., 101

de Souza, J.N., 6–7, 13, 15
Dedhia, J., 58

Dekel, E., 19

Delgado, J., 19

Della Toffola, L., 45

Demetrescu, C., 32–33, 45
Denton, A., 64

Devarakonda, A., 19

Di, Y., 22

Diaz, M., 19

Dillenberger, D.N., 22

Dillon, T., 12–13
Ding, Y., 46

Do, H., 53–72
Dubey, A., 22

Dunbar, D., 103

Dustdar, S., 14–15
Dutertre, B., 127

Dutta, S., 22

E
Elbaum, S., 60, 63–65, 70–71
El-Ghali, M., 89, 118

Ellahi, T., 8

Elmroth, E., 8–9, 22
Enberg, P., 19

Engler, D.R., 103

Engstrom, E., 54, 56–59
Epema, D., 19

Ernst, M., 68

F
Fahringer, T., 19, 46–47
Fang, W., 22

Farjo, J., 110–111
Farooq, Q., 59

Fatairi, N., 118

Fawaz, K., 124

Fekete, A., 3–4, 6, 15–16
Feng, S., 22

Finocchi, I., 32–33, 45
Fischer, K., 56–57, 59
Fortes, J.A., 22

Foster, H., 70–71
Fox, A., 3, 17, 22

Frankl, P.G., 57

Fraser, G., 98–99
Freeman, T., 8

Fu, C., 39

G
Galante, G., 7–10, 12–14, 17
Gandhi, N., 22

Gao, J., 6, 58

Garey, M.R., 67

Garg, S.K., 4, 6

Garzarán, M.J., 46

Gera, S., 22

Ghanem, M.M., 4, 22

Gmach, D., 22

Godefroid, P., 101–103
Gokhale, A., 22

Goldsmith, S.F., 45

Gomes, D.G., 6–7, 13, 15
Gong, W., 22

Gong, Z., 21–22
Goradia, T., 70–71
Gotlieb, A., 70

Goyal, P., 22

144 Author Index

Graham, S.L., 36, 44

Grance, T., 3–4
Grasso, I., 46–47
Grechanik, M., 2–6, 12–23, 32–48
Grewe, D., 46–47
Griffith, R., 3, 17, 22

Gross, T.R., 45, 47

Gu, X., 8, 19, 21–22
Gujarathi, A., 57–58
Guo, L., 4, 22

Guo, Y., 4, 22

Gupta, N., 63, 68

Gupta, R., 59, 67–69

H
Haddad, R.A., 8

Haidry, S., 65–66
Halabi, H., 89

Hale, J.E., 32

Han, R., 4, 22

Han, S., 45

Hand, S., 22

Hao, D., 69

Har’El, N., 19

Harder, M., 68

Harkous, H., 124

Harman, M., 54, 56–59, 63–65, 68
Harrold, M.J., 53–54, 56–65, 67–69, 71–72
Hauswirth, M., 34

Hazelwood, K.M., 45–46
He, S., 59

Hellerstein, J., 22

Hellerstein, J.L., 22

Hemmati, H., 61–62
Henis, E., 8

Henning, J.L., 36

Herbst, N.R., 4–5
Hettiarachchi, C.S., 63

Hierons, R., 64

Hill, Z., 19

Hochbaum, D.S., 103

Holmes, R., 124

Hong, C., 67

Hong, Y.J., 20–21
Horgan, J., 59, 104

Horgan, J.R., 59, 62, 68

Hormati, A., 46–47
Horwitz, S., 59

Hou, K.Y., 22

Hsia, P., 58

Hsu, C.H., 17–18
Hsu, W.C., 47

Hu, J., 22

Huang, H., 81–82
Huang, J., 22

Huang, L., 32–33, 45–46
Huggler, M., 47

Humphrey, M., 13–14, 19, 22
Hutchins, M., 70–71

I
Inozemtseva, L., 124

Iosup, A., 19

Iqbal, M., 59

Iqbal, W., 8–9
Islam, S., 3–4, 6, 15–16, 22

J
J. Pan J. Offutt, 68

Jaber, K., 58

Jagannathan, S., 47

Janecek, P., 8–9
Jarvis, S., 22

Jayram, T., 22

Jeffay, K., 22

Jefferson Offutt, A., 81–82
Jeffrey, D., 63, 68

Jeron, T., 59

Jezequel, J., 59

Jhala, R., 47

Jiang, Y., 46

Jiang, Z., 19

Jimenez-Peris, R., 4

Jin, G., 45

Johnson, D.S., 67

Johnson, N., 46–47
Jones, J., 57–58, 64
Jordan, M., 22

Joseph Chilenski, J., 136

Joseph, A.D., 3, 17

Juvekar, S., 47

K
Kaewpuang, R., 20–21
Kalyvianaki, E., 22

Kaminski, G., 68

Kapfhammer, G.M., 65

Karsai, G., 46

Karunamoorthy, D., 8

145Author Index

Katz, R., 3, 17

Kaur, P.D., 22

Keahey, K., 8

Kejariwal, A., 47

Kelly, K., 18

Kemme, B., 4

Kemper, A., 22

Kessler, P.B., 36, 44

Keung, J., 22

Khan, K.M., 32

Khurshid, S., 66

Kihl, M., 22

Killian, C., 47

Kim, J., 63–64
Kim, M., 4, 19, 60–61
King, J.C., 99–100
Kinneer, A., 64

Kishimoto, Z., 59

Kivity, A., 19

Klarlund, N., 101–102
Knuth, D.E., 32

Kofler, K., 46–47
Kondo, D., 19–20
Konwinski, A., 3, 17

Korel, B., 64–65, 68, 101
Kostić, D., 22

Kounev, S., 4–5
Koutsogiannakis, G., 64–65
Kovacshazy, T., 46

Krauser, E., 59

Krintz, C., 19

Krishnamoorthi, R., 63–64
Kumar, K., 64

Kung, D., 58

Kurc, T., 60–61
K€ustner, T., 46
Kwon, D., 45–46
Kwon, Y., 45–46

L
Labiche, Y., 58–59
LaCurts, K., 22

Lake, M., 63–64
Laor, D., 19

Larus, J.R., 35, 93, 95, 97–98
Lau, M.F., 68

Le Traon, Y., 59

Ledeczi, A., 46

Lee, B.S., 20–21
Lee, J., 46–47
Lee, K., 3–4, 6, 15–16, 22
Lee, S., 45–46
Lei, H., 4, 19

Leiserson, C., 135–136
Leon, D., 65, 89, 103–105, 119
Leung, H.K.N., 54, 56–58, 60
Levin, M.Y., 101–103
Li, C., 22

Li, J., 19, 22

Li, M., 4, 6

Li, S., 22

Li, T., 57–58
Li, X., 46

Li, Z., 64

Liang, D., 57–58
Lima, L., 68

Lin, C., 22

Lin, J., 47, 58

Lin, Y., 19

Litoiu, M., 18

Liu, A., 3–4, 6, 15–16, 22
Liu, L., 8

Liu, X., 22

Liu, Y., 19, 46–47
Lomuscio, A.R., 7, 12–14
London, S.A., 59, 62, 68

Lorido-Botran, T., 15–16, 22–23
Loyola, P., 67

Lozano, J.A., 15–16, 22–23
Lu, S., 45

Lu, X., 22

Lu, Z., 22

Lung, C.H., 22

Luo, Q., 32, 34

Luryi, S., 20–21

M
Ma, L., 22

Magni, A., 46–47
Mahlke, S., 46–47
Malhotra, K., 60–61
Malik, Z., 59

Malishevsky, A.G., 60, 63–65
Maniatis, P., 45–46
Mankovski, S., 18

Mao, M., 13–14, 19

146 Author Index

Marick, B., 139

Marijan, D., 70

Marin, G., 45

Marinov, D., 45, 99–102
Marotta, R., 45

Marre, M., 68

Marshall, P., 8

Marti, D., 19

Martins, E., 58

Masri, W., 80–140
Mateo, J., 22

Mattess, M., 19–20
Mauri, J.L., 22

Mckusick, M.K., 36, 44

McMaster, S., 68

Mehrara, M., 46–47
Mei, H., 69

Meinel, C., 22

Mell, P., 3–4
Mellen, J., 68

Mellor-Crummey, J., 45

Memon, A., 68

Meng, S., 8

Metzger, A., 63

Miguel-Alonso, J., 15–16, 22–23
Miller, S.P., 136

Miller, T., 65–66
Mirarab, S., 53–54, 60–61, 63, 65
Mishra, D., 56, 64–65
Miučin, S., 22

Mogul, J., 22

Moldovan, D., 14–15
Molnar, D.A., 101–103
Moore, L.R., 8

Morel, P., 59

Moura, L.M.D., 127

Mury, A.R., 7, 12–14

N
Nadeem, A., 59

Nae, V., 22

Nagaraj, K., 47

Nahas, N., 104, 117

Naik, M., 45–46
Navabi, A., 47

Navathe, S., 60–61
Nepal, S., 7, 12–14
Nethercote, N., 35–37

Nguyen, H., 8, 19, 21

Nguyen, H.D., 45–46
Nguyen, K., 45

Nikravesh, A.Y., 22

Nistor, A., 45–46
Niyato, D., 20–21
Nori, A.V., 101–103
Nossal, R., 45–46
Novaković, D., 22

O
O’Boyle, M.F., 46–47
Offutt, J., 59, 80–82, 138, 140
O’Reilly, U.M., 46

Orso, A., 53–54, 56–58, 60–61, 71–72
Osborne, J., 63–64
Osmond, M., 4, 22

Ostermann, S., 19

Ostrand, T., 70–71
Ostrin, J., 67

P
Pacifici, G., 22

Padala, P., 22

Padua, D., 46

Paek, Y., 45–46
Parekh, S., 22

Park, J.H., 17–18
Park, S.M., 22

Patiño-Martinez, M., 4

Patrizi, F., 7, 12–14
Patterson, D., 22

Pawluk, P., 18

Peceli, G., 46

Peng, C., 19

Pennings, M., 57–58
Perdue, J., 46

Perez-Sorrosal, F., 4

Perry, D., 66

Pervez, S., 47

Pfeiffer, W., 33

Podelski, A., 70

Podgurski, A., 65, 89, 91, 103–105, 117, 119
Pohl, K., 63

Porter, A., 63–64
Poshyvanyk, D., 32, 34

Post, A., 60–61
Pradel, M., 45, 47

147Author Index

Pradhan, P., 22

Probert, R.L., 58

Prodan, R., 19, 22

Puschner, P., 45–46

Q
Qi, D., 45–46
Qiu, J., 20

Qu, X., 61, 63, 65

R
Raghurama, G., 64

Rajamani, S.K., 101–103
Rajlich, V., 58

Ramil, J.F., 32

Ranjan, R., 17–18, 22
Rapps, S., 125

Rauchwerger, L., 46

Ravindranath, L., 45–46
Rego, P.A.L., 6–7, 13, 15
Reinwald, B., 20

Reussner, R., 4–5
Rius, J., 22

Rivest, R., 135–136
Robertazzi, T.G., 20–21
Robinson, B., 58, 61

Rodero, I., 19

Rodero-Merino, L., 7–9
Rolia, J., 22

Roos, R.S., 65

Rosenblum, D.S., 57–58
Rothermel, G., 53–54, 56–58, 60, 62–65,
67, 69–71

Rountev, A., 58

Roy, N., 22

Roychoudhury, A., 45–46
Rubenstein, D., 22

Ruiz-Alvarez, A., 19

Runeson, P., 54, 56–59
Ruth, M., 58

S
Saha, R., 66

Sahaaya, S.A., 63–64
Sahu, S., 8–9, 20
Saltz, J., 60–61
Samadi, M., 46–47
Sastry, S., 58

Scherpelz, J., 45

Schouten, E., 4

Schroeder, P., 68

Schulte, W., 101

Schulze, B., 7, 12–14
Schuster, A., 13

Segall, I., 69–70
Sen, K., 47, 99–102, 127–128
Seward, J., 35–37
Shaccour, E., 130, 132

Shaikh, A., 8–9, 20
Sharma, U., 8–9, 20
Shehory, O., 8

Shen, D., 22, 32, 34

Shen, S., 22

Shen, X., 46–47
Shen, Z., 8, 19, 21–22
Shenoy, P., 8–9, 20, 22
Sherriff, M., 63–64
Shi, X., 45

Shin, K.G., 22

Simmons, B., 18

Simon, G., 46

Sims, D.P., 58

Singhal, S., 22

Sinha, S., 57–58
Skoglund Mi, M., 58

Skoglund, M., 54, 56–59
Smiley, K., 58

Smirni, E., 22

Smit, M., 18

Soccar, G., 58

Soffa, M.L., 59, 65, 67–69
Sohn, J., 20–21
Solsona, F., 22

Song, L., 45

Song, M., 22

Soundararajan, V., 8

Spivey, J.M., 32

Spoon, S., 57–58
Spreitzer, M., 19, 22

Srikanth, H., 63–64
Srivastava, A., 55, 63

Srivastava, P., 64

Staats, M., 67

Stallbaum, H., 63

Stein, C., 135–136
Steinder, M., 19

148 Author Index

Stevenson, F.R., 32

Stoica, I., 22

Su, S., 22

Su, W., 22

Subbiah, S., 8, 19, 21–22
Susi, A., 64

Sutton, C., 22

Suzuki, J., 22

Sztipanovits, J., 46

T
Tahat, L.H., 68

Tahvildari, L., 53–54, 60–61, 63, 65
Takouna, I., 22

Tan, W.G., 32

Tanase, G., 46

Tang, C., 19

Tantawi, A., 19, 22

Teixidó, I., 22

Tetali, S.D., 102–103
Thakur, A.V., 102–103
Thampi, S.M., 22

Thiagarajan, J., 55, 63

Thomas, N., 46

Thottethodi, M., 20–21
Tian, K., 46

Tilbury, D., 22

Tillmann, N., 101–103
Tkachyshyn, O., 46

Tonella, P., 64

Tong, W., 22

Tordsson, J., 8–9, 22
Toyoshima, Y., 58

Truong, H.L., 14–15
Tsafrir, D., 13

Tsai, W.T., 6

Tu, S., 58

Tu, Y., 22

Turner, Y., 22

Tzoref-Brill, R., 69–70

U
Untch, R., 62–65
Untch, R.H., 64

Urgaonkar, B., 22

Usmani, A., 22

Uysal, M., 22

V
van Hemert, J., 22

Vaquero, L.M., 7–9
Vasić, N., 22

Vaysburg, B., 68

Vecchiola, C., 8, 19–20
Veeramachaneni, K., 46

Verma, A., 22

Versteeg, S., 4, 6

Vieira, V., 58

Vilaplana, J., 22

Villegas, D., 19

Villela, D., 22

Viswanathan, B., 22

Vo, K.P., 57

Voas, J.M., 68

Vokolos, F.I., 57

von Mayrhauser, A., 58

W
Walcott, A., 65

Wall, D.W., 47

Wang, J., 22

Wang, L., 22

Wang, N., 20

Wang, Q., 20

Wang, Z., 22, 46–47
Wee, S., 19

Wehrle, K., 22

Wehrle, M., 70

Weidendorfer, J., 46

Weinzierl, T., 46

Wen, Y., 46–47
Weyuker, E.J., 125

White, L.J., 54, 56–58, 60
Wilkerson, D.S., 45

Wilkes, J., 8, 19, 21–22
Williams, L., 58, 63–64
Wills, G.B., 22

Wong, W.E., 59, 62

Wood, T., 22

Wright, N.J., 33

Wu, C., 12–13
Wu, J., 22

Wu, P., 47

Wu, R., 19

Wu, X., 19, 69

Wu, Y., 59

149Author Index

X
Xiao, X., 45

Xiao, Z., 19

Xie, Q., 39

Xie, T., 45

Xiong, N.N., 22

Xu, G., 45, 58

Xu, J., 22

Xue, J., 20–21

Y
Yang, L.T., 17–18
Yang, S., 45–46
Yau, S., 59

Ye, F., 4

Yeo, S.S., 17–18
Yevtushenko, N., 68

Yew, P.C., 47

Yi, H., 45–46
Yi, S., 19–20
Yigitbasi, N., 19

Yin, J., 22

Yoo, S., 54, 56–59, 63–65, 68

Yu, J., 22

Yu, T., 20

Z
Zaparanuks, D., 34

Zaraket, F.A., 80–140
Zhang, D., 45

Zhang, E.Z., 46–47
Zhang, L., 66, 69

Zhang, N., 58

Zhang, Q., 22

Zhang, X., 47

Zhang, Z., 19

Zhao, M., 22

Zhao, X., 22

Zheng, J., 58

Zhi, L., 20

Zhu, J., 19

Zhu, X., 22

Zhu, Y., 22

Zlotnick, A., 69–70
Zolotarov, V., 19

150 Author Index

SUBJECT INDEX

Note: Page numbers followed by “f ” indicate figures, and “t” indicate tables.

A
Acceptance criterion, 120

Active clause coverage, 87–89
AGILE, 21

Agilefant, 38–39
Alchemist tool, 47

Algorithmic profiling

for compute cost functions, 41

effectiveness, 41–42
important feature, 40–41
limitations, 42

problem, 40

resource usage measurements, 41

All simpler profiles combined (ALL), 104

Amazon CloudWatch, 10–11
APFD (Average Percentage Faults Detected)

metrics, 65

Aprof tool, 35, 44

Auto Regression techniques, 22

Autoscaling feature, 10–11
Autoscaling rule, 7–8
Azure Watch, 11

B
Basic block coverage, 83

Basic block edges (BBE), 104

Basic blocks (BB), 104

Basic logic coverage criteria, 84–85
Basic test requirement (btr), 132

Branch coverage criterion, 84

C
Case-based ranking, 64

Chromosome representation, 119

Clause coverage criterion, 84

Cloud computing

advantage, 3

benefits, 2

Cloud elasticity

challenges

automated elasticity problem, 15

auto scaling metrics, 16–17

benchmark tools, 16–17
elasticity requirements, 14–15
interoperability between clouds, 12–13
oscillation problem, 15–16
resource availability, 12

resources granularity problem, 13

start-up time problem, 13–14
cloud service providers

Amazon Web Services, 10–11
GCP, 11–12
IBM and Rackspace, 12

Microsoft Azure, 11

RightScale and Scalr, 12

VMware, 12

definition, 4–5
NIST, 4

elasticity solutions

horizontal scaling, 9

migration, 9–10
predictive, 8–9
reactive, 7–8
vertical scaling, 9

importance in Cloud, 5

improvements

predictive resource scaling system,

21–23
for resource availability problem,

17–18
resource provisioning cost, 19–21
resource provisioning time, 18–19

metrics, 6

objectives, 5

scalability, 3–4
CloudScale, 22

Cloud service providers

Amazon Web Services, 10–11
GCP, 11–12
IBM and Rackspace, 12

Microsoft Azure, 11

RightScale and Scalr, 12

VMware, 12

Combinatorial coverage criterion, 85

151

Concolic (concrete-symbolic) execution

technique (CUTE), 102

Conditional test requirement (ctr), 132

Control flow graph (CFG), 83

COSMOS circuit simulator, 32–33
Coverage-based software testing

active clause coverage, 87–89
basic logic coverage criteria, 84–85
branch coverage criterion, 84

coverage criterion (C), 82

coverage level, 82

criteria subsumption, 82

def-use pair coverage, 85–87
function coverage criterion, 83

function-pair coverage criterion, 83

profiling

logic elements, 91–92
path coverage (see Path coverage)

structural elements, 90–91
program (P), 82

program element (pe), 81

property-based coverage criterion

characteristics, 124

coverage metrics values, 124

C-use coverage, 125–126
design and implementation, 127–128
experimental results, 128–130
selection sort implementation,

124–125
structural coverage metrics, 125

structural metrics, 124

statement coverage and basic block

coverage, 83

target level of coverage, 139

test case and test suite, 82

test requirement (tr), 82

test suite minimization (see Coverage-

based test suite minimization; Test

suite minimization), 103

user-defined coverage criterion

advantages, 131–132
algorithms, testing scenarios, 135–138
basic test requirement (btr), 132

bug fix testing, 134–135
conditional test requirement (ctr), 132

inactive clauses testing, 138

repeated test requirement (rtr), 133

sequential test requirement (str), 132

Coverage-based test suite minimization

branch coverage information, 108t

complex program elements

complexities, 104–105
dynamic information flow analysis,

105–106
dynamic slicing algorithm, 106

static analysis, 105

def-use coverage information, 108t

empirical study

experimental setup, 110–111
maximization results, 113–116
observations and cost analysis, 116–118
profile characteristics, 111–113
subject programs and test suites, 111

IFP coverage information, 108, 109t

Java method, 106–108, 107t
statement coverage information,

106–108, 107t
Coverage level, 82

D
DART, 102–103
Def-use pairs (DUP), 104

DellDVDStore, 38–39
DUP coverage, 85–87
Dynamic symbolic execution (DSE),

101–103

E
Elasticity. See Cloud elasticity

EVOMO (EVOlution-aware economic

MOdel for regression testing)

model, 60

F
Fitness function, 120

FOREPOST, 39, 44

Function coverage criterion, 83

G
Genetic algorithm-driven profiler

(GA-prof), 37–38
Google Cloud provides, 11–12
Google Compute Engine, 11–12
Gprof tool, 36, 44

152 Subject Index

H
Horizontal scaling technique, 9

Hot-add feature, 9

Hybrid elasticity solutions, 8–9

I
Information flow pairs (IFP), 104

Input-sensitive profiling, 34–35
Aprof tool, 35, 44

challenges, 33–34
code optimization, 46

data dependence profiling, 47

Gprof tool, 36, 44

limitations, 36–37
memcheck and callgrind, 36

program performance prediction, 45–46
read memory size, 35–36, 43–44
scalability problems, 45

synthesis, 42–44
task scheduling optimizations, 46–47
test generation analysis, 47

J
javac, 111

JPetStore, 38–39
JTidy, 111

K
KLEE, 103

M
Method call pairs (MCP), 104

Method calls (MC), 104

Migration technique, 9–10

N
NAPFD, 65

P
Path condition (PC), 99

Path coverage

acyclic paths

control flow graph, 93

intraprocedural profiling, 93

edge selection, 95–96
edge value assigning, 93–95
loops, 97–98

path regeneration, 96–97
test case generation

dynamic symbolic execution, 101–103
static symbolic execution, 99–101

Performance profiling, 32

Population generation, 120

Predicate coverage criterion, 84

Predictive elasticity solution, 8–9
Predictive resource scaling system, 21–23
Program element (pe), 81

Property-based coverage criterion

(PBCOV)

characteristics, 124

coverage metrics values, 124

C-use coverage, 125–126
design and implementation, 127–128
experimental results, 128–130
selection sort implementation,

124–125
structural coverage metrics, 125

structural metrics, 124

R
Reactive elasticity solution, 7–8
Read memory size (RMS), 9–10, 35–36
Regression testing techniques

definition, 55, 55f

regression test selection (RTS), 55–56
data sources and techniques, 58–59
evaluation metrics, 59–60
graph walk approach, 57–58, 57f
precision and efficiency, 58

recent advancements, 60–62
safety, 57

retest-all approach, 55

Siemens programs, 70–71
test case prioritization (TCP), 55–56
additional block coverage

prioritization, 62–63
data sources and techniques, 63–65
evaluation metrics, 65

recent advancements, 65–67
total block coverage prioritization,

62–63, 62f
test suite minimization (TSM), 55–56
data sources and techniques, 68

evaluation metrics, 68–69
recent advancements, 69–70

153Subject Index

Regression test selection (RTS), 55–56
data sources and techniques, 58–59
data-flow analysis approach, 59

firewall approach, 58

graph walking approach, 58

integer programming, 59

model-based approach, 59

symbolic execution and slicing, 59

evaluation metrics, 59–60
EVOMO model, 60

precision and recall, 59

graph walk approach, 57–58, 57f
precision and efficiency, 58

recent advancements, 60–62
model-based test case selection, 61–62
ontology-driven database systems,

60–61
Qu approach, 61

size constrained regression test

selection, 61

safety, 57

Repeated test requirement (rtr), 133

REPiR (Regression test Prioritization using

information Retrieval), 66

Replication technique, 9

Rule-Condition-Action technique, 7–8

S
SAGE, 102–103
Search-based profiling

GA-prof, 37–38
detect performance degradations, 38

performance effectiveness, 38–39
performance evaluation, 38–39

limitations, 39–40
nontrivial applications, 37

Sequential test requirement (str), 132

Slice pairs (SliceP), 104

Software-artifact Infrastructure Repository

(SIR), 70–71
Statement coverage criterion, 83

Static symbolic execution, 99–101
Stopping criterion, 121

T
Test case prioritization (TCP), 55–56
additional block coverage prioritization,

62–63

data sources and techniques, 63–65
code coverage-based approach, 64

distribution and cost-aware, 65

history-based approach, 64

human-based approach, 64

interaction and probabilistic, 65

model-based approach, 64

requirements-based approach, 64

evaluation metrics, 65

recent advancements, 65–67
information retrieval, 66

open and closed dependency structures,

65–66
REPiR, 66

software artifacts, 67

text-mining technique, 66–67
total block coverage prioritization, 62–63,

62f

Test suite minimization (TSM), 55–56
data sources and techniques, 68

code coverage-based approach, 68

graph-based approach, 68

model-based approach, 68

evaluation metrics, 68–69
genetic algorithm

acceptance criterion, 120

chromosome representation, 119

fitness function, 120

minimization results, 121–124
population generation, 120

solution set, 121

stopping criterion, 121

transformation operator, 120

recent advancements, 69–70
CTD approach, 69–70
FLOWER approach, 70

flow network approach, 70

to GUI applications, 70

technique, 118–119
Time series analysis mechanism, 22

Traditional profiling, 32

Transformation operator, 120

U
User-defined coverage criterion (UCov)

advantages, 131–132
algorithms, testing scenarios, 135–138
basic test requirement (btr), 132

154 Subject Index

Bug Fix testing, 134–135
conditional test requirement (ctr), 132

inactive clauses testing, 138

repeated test requirement (rtr), 133

sequential test requirement (str), 132

V
Vertical scaling technique, 9

W
wf-0.41 program, 36

X
Xerces, 111

Y
YOGI, 102–103

155Subject Index

This page intentionally left blank

CONTENTS OF VOLUMES IN THIS SERIES

Volume 60

Licensing and Certification of Software Professionals

DONALD J. BAGERT

Cognitive Hacking

GEORGE CYBENKO, ANNARITA GIANI, AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics

WARREN HARRISON

Survivability: Synergizing Security and Reliability

CRISPIN COWAN

Smart Cards

KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPH DIDIER

Shotgun Sequence Assembly

MIHAI POP

Advances in Large Vocabulary Continuous Speech Recognition

GEOFFREY ZWEIG AND MICHAEL PICHENY

Volume 61

Evaluating Software Architectures

ROSEANNE TESORIERO TVEDT, PATRICIA COSTA, AND MIKAEL LINDVALL

Efficient Architectural Design of High Performance Microprocessors

LIEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems

A. R. HURSON, J. PLOSKONKA, Y. JIAO, AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications

STAN MCCLELLAN, STEPHEN LOW, AND WAI-TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing

DEAN COPSEY, MARK OSKIN, AND FREDERIC T. CHONG

Volume 62

An Introduction to Agile Methods

DAVID COHEN, MIKAEL LINDVALL, AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development

PANKAJ JALOTE, AVEEJEET PALIT, AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing

DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications

GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN

Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)

DAVID KLAPPHOLZ AND DANIEL PORT

157

Software Quality Estimation with Case-Based Reasoning

TAGHI M. KHOSHGOFTAAR AND NAEEM SELIYA

Data Management Technology for Decision Support Systems

SURAJIT CHAUDHURI, UMESHWAR DAYAL, AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar,

and VLIW

JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip

THEOCHARIS THEOCHARIDES, GREGORY M. LINK, NARAYANAN VIJAYKRISHNAN,

AND MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems

SHOUKAT ALI, TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. MACIEJEWSKI,

NOAH BECK, LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER,

JAMES P. ROBERTSON, MITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems

WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing

BYUNG Y. SUNG, MOHAN KUMAR, AND BEHROOZ SHIRAZI

Search and Retrieval of Compressed Text

AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI VIJAYA SATYA, AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services

ABDUR CHOWDHURY

Web Services

SANG SHIN

A Protocol Layer Survey of Network Security

JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability

ROLAND T. RUST, P. K. KANNAN, AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize

DEBASHIS SAHA

Open Source Software Development: Structural Tension in the American Experiment

COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?

PETER GREGOR, DAVID SLOAN, AND ALAN F. NEWELL

Volume 65

The State of Artificial Intelligence

ADRIAN A. HOPGOOD

Software Model Checking with SPIN

GERARD J. HOLZMANN

158 Contents of Volumes in this Series

Early Cognitive Computer Vision

JAN-MARK GEUSEBROEK

Verification and Validation and Artificial Intelligence

TIM MENZIES AND CHARLES PECHEUR

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases

MARK J. HUISKES AND ERIC J. PAUWELS

Defect Analysis: Basic Techniques for Management and Learning

DAVID N. CARD

Function Points

CHRISTOPHER J. LOKAN

The Role of Mathematics in Computer Science and Software Engineering Education

PETER B. HENDERSON

Volume 66

Calculating Software Process Improvements Return on Investment

RINI VAN SOLINGEN AND DAVID F. RICO

Quality Problem in Software Measurement Data

PIERRE REBOURS AND TAGHI M. KHOSHGOFTAAR

Requirements Management for Dependable Software Systems

WILLIAM G. BAIL

Mechanics of Managing Software Risk

WILLIAM G. BAIL

The PERFECT Approach to Experience-Based Process Evolution

BRIAN A. NEJMEH AND WILLIAM E. RIDDLE

The Opportunities, Challenges, and Risks of High Performance Computing in

Computational Science and Engineering

DOUGLASS E. POST, RICHARD P. KENDALL, AND ROBERT F. LUCAS

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues

and Solutions

A. R. HURSON, Y. JIAO, AND B. A. SHIRAZI

Programming Models and Synchronization Techniques for Disconnected Business

Applications

AVRAHAM LEFF AND JAMES T. RAYFIELD

Academic Electronic Journals: Past, Present, and Future

ANAT HOVAV AND PAUL GRAY

Web Testing for Reliability Improvement

JEFF TIAN AND LI MA

Wireless Insecurities

MICHAEL STHULTZ, JACOB UECKER, AND HAL BERGHEL

The State of the Art in Digital Forensics

DARIO FORTE

159Contents of Volumes in this Series

Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement

YING CHIH LIN AND CHUAN YI TANG

Models and Methods in Comparative Genomics

GUILLAUME BOURQUE AND LOUXIN ZHANG

Translocation Distance: Algorithms and Complexity

LUSHENG WANG

Computational Grand Challenges in Assembling the Tree of Life: Problems

and Solutions

DAVID A. BADER, USMAN ROSHAN, AND ALEXANDROS STAMATAKIS

Local Structure Comparison of Proteins

JUN HUAN, JAN PRINS, AND WEI WANG

Peptide Identification via Tandem Mass Spectrometry

XUE WU, NATHAN EDWARDS, AND CHAU-WEN TSENG

Volume 69

The Architecture of Efficient Multi-Core Processors: A Holistic Approach

RAKESH KUMAR AND DEAN M. TULLSEN

Designing Computational Clusters for Performance and Power

KIRK W. CAMERON, RONG GE, AND XIZHOU FENG

Compiler-Assisted Leakage Energy Reduction for Cache Memories

WEI ZHANG

Mobile Games: Challenges and Opportunities

PAUL COULTON, WILL BAMFORD, FADI CHEHIMI, REUBEN EDWARDS, PAUL GILBERTSON,

AND OMER RASHID

Free/Open Source Software Development: Recent Research Results and Methods

WALT SCACCHI

Volume 70

Designing Networked Handheld Devices to Enhance School Learning

JEREMY ROSCHELLE, CHARLES PATTON, AND DEBORAH TATAR

Interactive Explanatory and Descriptive Natural-Language Based Dialogue for Intelligent

Information Filtering

JOHN ATKINSON AND ANITA FERREIRA

A Tour of Language Customization Concepts

COLIN ATKINSON AND THOMAS KÜHNE

Advances in Business Transformation Technologies

JUHNYOUNG LEE

Phish Phactors: Offensive and Defensive Strategies

HAL BERGHEL, JAMES CARPINTER, AND JU-YEON JO

Reflections on System Trustworthiness

PETER G. NEUMANN

160 Contents of Volumes in this Series

Volume 71

Programming Nanotechnology: Learning from Nature

BOONSERM KAEWKAMNERDPONG, PETER J. BENTLEY, AND NAVNEET BHALLA

Nanobiotechnology: An Engineers Foray into Biology

YI ZHAO AND XIN ZHANG

Toward Nanometer-Scale Sensing Systems: Natural and Artificial Noses as Models for

Ultra-Small, Ultra-Dense Sensing Systems

BRIGITTE M. ROLFE

Simulation of Nanoscale Electronic Systems

UMBERTO RAVAIOLI

Identifying Nanotechnology in Society

CHARLES TAHAN

The Convergence of Nanotechnology, Policy, and Ethics

ERIK FISHER

Volume 72

DARPAs HPCS Program: History, Models, Tools, Languages

JACK DONGARRA, ROBERT GRAYBILL, WILLIAM HARROD, ROBERT LUCAS,

EWING LUSK, PIOTR LUSZCZEK, JANICE MCMAHON, ALLAN SNAVELY, JEFFERY VETTER,

KATHERINE YELICK, SADAF ALAM, ROY CAMPBELL, LAURA CARRINGTON, TZU-YI CHEN,

OMID KHALILI, JEREMY MEREDITH, AND MUSTAFA TIKIR

Productivity in High-Performance Computing

THOMAS STERLING AND CHIRAG DEKATE

Performance Prediction and Ranking of Supercomputers

TZU-YI CHEN, OMID KHALILI, ROY L. CAMPBELL, JR., LAURA CARRINGTON,

MUSTAFA M. TIKIR, AND ALLAN SNAVELY

Sampled Processor Simulation: A Survey

LIEVEN EECKHOUT

Distributed Sparse Matrices for Very High Level Languages

JOHN R. GILBERT, STEVE REINHARDT, AND VIRAL B. SHAH

Bibliographic Snapshots of High-Performance/High-Productivity Computing

MYRON GINSBERG

Volume 73

History of Computers, Electronic Commerce, and Agile Methods

DAVID F. RICO, HASAN H. SAYANI, AND RALPH F. FIELD

Testing with Software Designs

ALIREZA MAHDIAN AND ANNELIESE A. ANDREWS

Balancing Transparency, Efficiency, and Security in Pervasive Systems

MARK WENSTROM, ELOISA BENTIVEGNA, AND ALI R. HURSON

Computing with RFID: Drivers, Technology and Implications

GEORGE ROUSSOS

Medical Robotics and Computer-Integrated Interventional Medicine

RUSSELL H. TAYLOR AND PETER KAZANZIDES

161Contents of Volumes in this Series

Volume 74

Data Hiding Tactics for Windows and Unix File Systems

HAL BERGHEL, DAVID HOELZER, AND MICHAEL STHULTZ

Multimedia and Sensor Security

ANNA HAĆ

Email Spam Filtering

ENRIQUE PUERTAS SANZ, JOS�e MARÍA GÓMEZ HIDALGO, AND JOS�e CARLOS

CORTIZO P�eREZ

The Use of Simulation Techniques for Hybrid Software Cost Estimation and Risk Analysis

MICHAEL KL€aS, ADAM TRENDOWICZ, AXEL WICKENKAMP, JÜRGEN MÜNCH,

NAHOMI KIKUCHI, AND YASUSHI ISHIGAI

An Environment for Conducting Families of Software Engineering Experiments

LORIN HOCHSTEIN, TAIGA NAKAMURA, FORREST SHULL, NICO ZAZWORKA,

VICTOR R. BASILI, AND MARVIN V. ZELKOWITZ

Global Software Development: Origins, Practices, and Directions

JAMES J. CUSICK, ALPANA PRASAD, AND WILLIAM M. TEPFENHART

Volume 75

The UK HPC Integration Market: Commodity-Based Clusters

CHRISTINE A. KITCHEN AND MARTYN F. GUEST

Elements of High-Performance Reconfigurable Computing

TOM VANCOURT AND MARTIN C. HERBORDT

Models and Metrics for Energy-Efficient Computing

PARTHASARATHY RANGANATHAN, SUZANNE RIVOIRE, AND JUSTIN MOORE

The Emerging Landscape of Computer Performance Evaluation

JOANN M. PAUL, MWAFFAQ OTOOM, MARC SOMERS, SEAN PIEPER,

AND MICHAEL J. SCHULTE

Advances in Web Testing

CYNTRICA EATON AND ATIF M. MEMON

Volume 76

Information Sharing and Social Computing: Why, What, and Where?

ODED NOV

Social Network Sites: Users and Uses

MIKE THELWALL

Highly Interactive Scalable Online Worlds

GRAHAM MORGAN

The Future of Social Web Sites: Sharing Data and Trusted Applications with Semantics

SHEILA KINSELLA, ALEXANDRE PASSANT, JOHN G. BRESLIN, STEFAN DECKER,

AND AJIT JAOKAR

Semantic Web Services Architecture with Lightweight Descriptions of Services

TOMAS VITVAR, JACEK KOPECKY, JANA VISKOVA, ADRIANMOCAN, MICK KERRIGAN,

AND DIETER FENSEL

162 Contents of Volumes in this Series

Issues and Approaches for Web 2.0 Client Access to Enterprise Data

AVRAHAM LEFF AND JAMES T. RAYFIELD

Web Content Filtering

JOS�E MARÍA GÓMEZ HIDALGO, ENRIQUE PUERTAS SANZ, FRANCISCO CARRERO GARCÍA,

AND MANUEL DE BUENAGA RODRÍGUEZ

Volume 77

Photo Fakery and Forensics

HANY FARID

Advances in Computer Displays

JASON LEIGH, ANDREW JOHNSON, AND LUC RENAMBOT

Playing with All Senses: Human–Computer Interface Devices for Games

JÖRN LOVISCACH

A Status Report on the P Versus NP Question

ERIC ALLENDER

Dynamically Typed Languages

LAURENCE TRATT

Factors Influencing Software Development Productivity—State-of-the-Art and

Industrial Experiences

ADAM TRENDOWICZ AND JÜRGEN MÜNCH

Evaluating the Modifiability of Software Architectural Designs

M. OMOLADE SALIU, GÜNTHER RUHE, MIKAEL LINDVALL,

AND CHRISTOPHER ACKERMANN

The Common Law and Its Impact on the Internet

ROBERT AALBERTS, DAVID HAMES, PERCY POON, AND PAUL D. THISTLE

Volume 78

Search Engine Optimization—Black and White Hat Approaches

ROSS A. MALAGA

Web Searching and Browsing: A Multilingual Perspective

WINGYAN CHUNG

Features for Content-Based Audio Retrieval

DALIBOR MITROVIĆ, MATTHIAS ZEPPELZAUER, AND CHRISTIAN BREITENEDER

Multimedia Services over Wireless Metropolitan Area Networks

KOSTAS PENTIKOUSIS, JARNO PINOLA, ESA PIRI, PEDRO NEVES, AND SUSANA SARGENTO

An Overview of Web Effort Estimation

EMILIA MENDES

Communication Media Selection for Remote Interaction of Ad Hoc Groups

FABIO CALEFATO AND FILIPPO LANUBILE

Volume 79

Applications in Data-Intensive Computing

ANUJ R. SHAH, JOSHUA N. ADKINS, DOUGLAS J. BAXTER, WILLIAM R. CANNON,

DANIEL G. CHAVARRIA-MIRANDA, SUTANAY CHOUDHURY, IAN GORTON,

163Contents of Volumes in this Series

DEBORAH K. GRACIO, TODD D. HALTER, NAVDEEP D. JAITLY, JOHN R. JOHNSON,

RICHARD T. KOUZES, MATTHEW C. MACDUFF, ANDRES MARQUEZ,

MATTHEW E. MONROE, CHRISTOPHER S. OEHMEN, WILLIAM A. PIKE, CHAD SCHERRER,

ORESTE VILLA, BOBBIE-JO WEBB-ROBERTSON, PAUL D. WHITNEY, AND NINO ZULJEVIC

Pitfalls and Issues of Manycore Programming

AMI MAROWKA

Illusion of Wireless Security

ALFRED W. LOO

Brain–Computer Interfaces for the Operation of Robotic and Prosthetic Devices

DENNIS J. MCFARLAND AND JONATHAN R. WOLPAW

The Tools Perspective on Software Reverse Engineering: Requirements, Construction,

and Evaluation

HOLGER M. KIENLE AND HAUSI A. MÜLLER

Volume 80

Agile Software Development Methodologies and Practices

LAURIE WILLIAMS

A Picture from the Model-Based Testing Area: Concepts, Techniques, and Challenges

ARILO C. DIAS-NETO AND GUILHERME H. TRAVASSOS

Advances in Automated Model-Based System Testing of Software Applications with a

GUI Front-End

ATIF M. MEMON AND BAO N. NGUYEN

Empirical Knowledge Discovery by Triangulation in Computer Science

RAVI I. SINGH AND JAMES MILLER

StarLight: Next-Generation Communication Services, Exchanges, and Global Facilities

JOE MAMBRETTI, TOM DEFANTI, AND MAXINE D. BROWN

Parameters Effecting 2D Barcode Scanning Reliability

AMIT GROVER, PAUL BRAECKEL, KEVIN LINDGREN, HAL BERGHEL, AND DENNIS COBB

Advances in Video-Based Human Activity Analysis: Challenges and Approaches

PAVAN TURAGA, RAMA CHELLAPPA, AND ASHOK VEERARAGHAVAN

Volume 81

VoIP Security: Vulnerabilities, Exploits, and Defenses

XINYUAN WANG AND RUISHAN ZHANG

Phone-to-Phone Configuration for Internet Telephony

YIU-WING LEUNG

SLAM for Pedestrians and Ultrasonic Landmarks in Emergency Response Scenarios

CARL FISCHER, KAVITHA MUTHUKRISHNAN, AND MIKE HAZAS

Feeling Bluetooth: From a Security Perspective

PAUL BRAECKEL

Digital Feudalism: Enclosures and Erasures from Digital Rights Management to the

Digital Divide

SASCHA D. MEINRATH, JAMES W. LOSEY, AND VICTOR W. PICKARD

Online Advertising

AVI GOLDFARB AND CATHERINE TUCKER

164 Contents of Volumes in this Series

Volume 82

The Hows and Whys of Information Markets

AREEJ YASSIN AND ALAN R. HEVNER

Measuring and Monitoring Technical Debt

CAROLYN SEAMAN AND YUEPU GUO

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing

Systems

ANTON BELOGLAZOV, RAJKUMAR BUYYA, YOUNG CHOON LEE, AND ALBERT ZOMAYA

Applications of Mobile Agents in Wireless Networks and Mobile Computing

SERGIO GONZÁLEZ-VALENZUELA, MIN CHEN, AND VICTOR C.M. LEUNG

Virtual Graphics for Broadcast Production

GRAHAM THOMAS

Advanced Applications of Virtual Reality

JÜRGEN P. SCHULZE, HAN SUK KIM, PHILIP WEBER, ANDREW PRUDHOMME,

ROGER E. BOHN, MAURIZIO SERACINI, AND THOMAS A. DEFANTI

Volume 83

The State of the Art in Identity Theft

AMIT GROVER, HAL BERGHEL, AND DENNIS COBB

An Overview of Steganography

GARY C. KESSLER AND CHET HOSMER

CAPTCHAs: An Artificial Intelligence Application to Web Security

JOSÉ MARÍA GÖMEZ HIDALGO AND GONZALO ALVAREZ

Advances in Video-Based Biometrics

RAMA CHELLAPPA AND PAVAN TURAGA

Action Research Can Swing the Balance in Experimental Software Engineering

PAULO SÉRGIO MEDEIROS DOS SANTOS AND GUILHERME HORTA TRAVASSOS

Functional and Nonfunctional Design Verification for Embedded Software Systems

ARNAB RAY, CHRISTOPHER ACKERMANN, RANCE CLEAVELAND, CHARLES SHELTON,

AND CHRIS MARTIN

Volume 84

Combining Performance and Availability Analysis in Practice

KISHOR TRIVEDI, ERMESON ANDRADE, AND FUMIO MACHIDA

Modeling, Analysis, and Testing of System Vulnerabilities

FEVZI BELLI, MUTLU BEYAZIT, ADITYA P. MATHUR, AND NIMAL NISSANKE

Software Design and Verification for Safety-Relevant Computer-Based Systems

FRANCESCA SAGLIETTI

System Dependability: Characterization and Benchmarking

YVES CROUZET AND KARAMA KANOUN

Pragmatic Directions in Engineering Secure Dependable Systems

M. FARRUKH KHAN AND RAYMOND A. PAUL

165Contents of Volumes in this Series

Volume 85

Software Organizations and Test Process Development

JUSSI KASURINEN

Model-Based GUI Testing: Case Smartphone Camera and Messaging Development

RUPESH DEV, ANTTI JÄÄSKELÄINEN, AND MIKA KATARA

Model Transformation Specification and Design

K. LANO AND S. KOLAHDOUZ-RAHIMI

Advances on Improving Automation in Developer Testing

XUSHENG XIAO, SURESH THUMMALAPENTA, AND TAO XIE

Automated Interoperability Testing of Healthcare Information Systems

DIANA ELENA VEGA

Event-Oriented, Model-Based GUI Testing and Reliability Assessment—Approach

and Case Study

FEVZI BELLI, MUTLU BEYAZIT, AND NEVIN GÜLER

Deployable Capture/Replay Supported by Internal Messages

STEFFEN HERBOLD, UWE BÜNTING, JENS GRABOWSKI, AND STEPHAN WAACK

Volume 86

Model-Based Testing: Achievements and Future Challenges

MICHAEL MLYNARSKI, BARIS GÜLDALI, GREGOR ENGELS, AND STEPHAN WEIßLEDER

Cloud Computing Uncovered: A Research Landscape

MOHAMMAD HAMDAQA AND LADAN TAHVILDARI

Advances in User-Session-Based Testing of Web Applications

SREEDEVI SAMPATH

Machine Learning and Event-Based Software Testing: Classifiers for Identifying Infeasible

GUI Event Sequences

ROBERT GOVE AND JORGE FAYTONG

A Framework for Detecting and Diagnosing Configuration Faults in Web Applications

CYNTRICA EATON

Trends in Model-based GUI Testing

STEPHAN ARLT, SIMON PAHL, CRISTIANO BERTOLINI, AND MARTIN SCH€aF

Regression Testing in Software Product Line Engineering

PER RUNESON AND EMELIE ENGSTRÖM

Volume 87

Introduction and Preface

SAHRA SEDIGH AND ALI HURSON

Techniques to Measure, Model, and Manage Power

BHAVISHYA GOEL, SALLY A. MCKEE, AND MAGNUS SJ€aLANDER

Quantifying IT Energy Efficiency

FLORIAN NIEDERMEIER, GERGÓ́ LOVÁSZ, AND HERMANN DE MEER

State of the Art on Technology and Practices for Improving the Energy Efficiency

of Data Storage

MARCOS DIAS DE ASSUNÇÃO AND LAURENT LEFÈVRE

166 Contents of Volumes in this Series

Optical Interconnects for Green Computers and Data Centers

SHINJI TSUJI AND TAKASHI TAKEMOTO

Energy Harvesting for Sustainable Smart Spaces

NGA DANG, ELAHEH BOZORGZADEH, AND NALINI VENKATASUBRAMANIAN

Volume 88

Energy-Aware High Performance Computing—A Survey

MICHAEL KNOBLOCH

Micro-Fluidic Cooling for Stacked 3D-ICs: Fundamentals, Modeling and Design

BING SHI AND ANKUR SRIVASTAVA

Sustainable DVFS-Enabled Multi-Core Architectures with On-Chip Wireless Links

JACOB MURRAY, TENG LU, PARTHA PANDE, AND BEHROOZ SHIRAZI

Smart Grid Considerations: Energy Efficiency vs. Security

ANDREAS BERL, MICHAEL NIEDERMEIER, AND HERMANN DE MEER

Energy Efficiency Optimization of Application Software

KAY GROSSKOP AND JOOST VISSER

Volume 89

Testing Android Mobile Applications: Challenges, Strategies, and Approaches

DOMENICO AMALFITANO, ANNA RITA FASOLINO, PORFIRIO TRAMONTANA,

AND BRYAN ROBBINS

Regression Testing of Evolving Programs

MARCEL BÖHME, ABHIK ROYCHOUDHURY, AND BRUNO C.D.S. OLIVEIRA

Model Inference and Testing

MUHAMMAD NAEEM IRFAN, CATHERINE ORIAT, AND ROLAND GROZ

Testing of Configurable Systems

XIAO QU

Test Cost-Effectiveness and Defect Density: A Case Study on the Android Platform

VAHID GAROUSI, RILEY KOTCHOREK, AND MICHAEL SMITH

Volume 90

Advances in Real-World Sensor Network System

DEBRAJ DE, WEN-ZHAN SONG, MINGSEN XU, LEI SHI, AND SONG TAN

Novel System Architectures for Semantic-Based Integration of Sensor Networks

ZORAN BABOVIC AND VELJKO MILUTINOVIC

Mobility in Wireless Sensor Networks

SRIRAM CHELLAPPAN AND NEELANJANA DUTTA

A Classification of Data Mining Algorithms for Wireless Sensor Networks, and Classification

Extension to Concept Modeling in System of Wireless Sensor Networks Based on Natural

Language Processing

STAŠA VUJIČIĆ STANKOVIĆ, NEMANJA KOJIĆ, GORAN RAKOČEVIĆ, DUŠKO VITAS,

AND VELJKO MILUTINOVIĆ

167Contents of Volumes in this Series

Multihoming: A Comprehensive Review

BRUNO SOUSA, KOSTAS PENTIKOUSIS, AND MARILIA CURADO

Efficient Data Analytics Over Cloud

RAJEEV GUPTA, HIMANSHU GUPTA, AND MUKESH MOHANIA

Volume 91

Reverse-Engineering Software Behavior

NEIL WALKINSHAW

Understanding Application Contentiousness and Sensitivity on Modern Multicores

JASON MARS AND LINGJIA TANG

An Outlook of High Performance Computing Infrastructures for Scientific Computing

AMJAD ALI AND KHALID SAIFULLAH SYED

Model-Driven Engineering of Reliable Fault-Tolerant Systems—A State-of-the-Art Survey

VIDAR SLÅTTEN, PETER HERRMANN, AND FRANK ALEXANDER KRAEMER

Volume 92

Register-Level Communication in Speculative Chip Multiprocessors

MILAN B. RADULOVIĆ, MILO V. TOMAŠEVIĆ, AND VELJKO M. MILUTINOVIĆ

Survey on System I/O Hardware Transactions and Impact on Latency, Throughput, and

Other Factors

STEEN LARSEN AND BEN LEE

Hardware and Application Profiling Tools

TOMISLAV JANJUSIC AND KRISHNA KAVI

Model Transformation Using Multiobjective Optimization

MOHAMED WIEM MKAOUER AND MAROUANE KESSENTINI

Manual Parallelization Versus State-of-the-Art Parallelization Techniques: The SPEC

CPU2006 as a Case Study

ALEKSANDAR VITOROVIĆ, MILO V. TOMAŠEVIĆ, AND VELJKO M. MILUTINOVIĆ

Volume 93

Recent Advances in Web Testing

PAOLO TONELLA, FILIPPO RICCA, AND ALESSANDRO MARCHETTO

Exploiting Hardware Monitoring in Software Engineering

KRISTEN R. WALCOTT-JUSTICE

Advances in Model-Driven Security

LEVI LÚCIO, QIN ZHANG, PHU H. NGUYEN, MOUSSA AMRANI, JACQUES KLEIN,

HANS VANGHELUWE, AND YVES LE TRAON

Adapting Multi-Criteria Decision Analysis for Assessing the Quality of Software Products.

Current Approaches and Future Perspectives

ADAM TRENDOWICZ AND SYLWIA KOPCZYŃSKA

Change-Effects Analysis for Evolving Software

RAUL SANTELICES, YIJI ZHANG, HAIPENG CAI, AND SIYUAN JIANG

168 Contents of Volumes in this Series

Volume 94

Comparison of Security Models: Attack Graphs Versus Petri Nets

STEVEN C. WHITE AND SAHRA SEDIGH SARVESTANI

A Survey on Zero-Knowledge Proofs

LI FENG AND BRUCE MCMILLIN

Similarity of Private Keyword Search over Encrypted Document Collection

YOUSEF ELMEHDWI, WEI JIANG, AND ALIREZA HURSON

Multiobjective Optimization for Software Refactoring and Evolution

ALI OUNI, MAROUANE KESSENTINI, AND HOUARI SAHRAOUI

Volume 95

Automated Test Oracles: A Survey

MAURO PEZZÈ AND CHENG ZHANG

Automated Extraction of GUI Models for Testing

PEKKA AHO, TEEMU KANSTR�EN, TOMI RÄTY, AND JUHA RÖNING

Automated Test Oracles: State of the Art, Taxonomies, and Trends

RAFAEL A.P. OLIVEIRA, UPULEE KANEWALA, AND PAULO A. NARDI

Anti-Pattern Detection: Methods, Challenges, and Open Issues

FABIO PALOMBA, ANDREA DE LUCIA, GABRIELE BAVOTA, AND ROCCO OLIVETO

Classifying Problems into Complexity Classes

WILLIAM GASARCH

Volume 96

An Overview of Selected Heterogeneous and Reconfigurable Architectures

SAŠA STOJANOVIĆ, DRAGAN BOJIĆ, AND MIROSLAV BOJOVIĆ

Concurrency, Synchronization, and Speculation—The Dataflow Way

KRISHNA KAVI, CHARLES SHELOR, AND DOMENICO PACE

Dataflow Computing in Extreme Performance Conditions

DIEGO ORIATO, STEPHEN GIRDLESTONE, AND OSKAR MENCER

Sorting Networks on Maxeler Dataflow Supercomputing Systems

ANTON KOS, VUKAŠIN RANKOVIĆ, AND SAŠO TOMAŽIČ

Dual Data Cache Systems: Architecture and Analysis

ZIVOJIN SUSTRAN, GORAN RAKOCEVIC, AND VELJKO MILUTINOVIC

Volume 97

Comparing Reuse Strategies in Different Development Environments

JULIA VARNELL-SARJEANT AND ANNELIESE AMSCHLER ANDREWS

Advances in Behavior Modeling

ELLA ROUBTSOVA

Overview of Computational Approaches for Inference of MicroRNA-Mediated and Gene

Regulatory Networks

BLAGOJ RISTEVSKI

169Contents of Volumes in this Series

Proving Programs Terminate Using Well-Founded Orderings, Ramsey’s Theorem,

and Matrices

WILLIAM GASARCH

Advances in Testing JavaScript-Based Web Applications

ALI MESBAH

Volume 98

An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

IVAN RATKOVIĆ, NIKOLA BEŽANIĆ, OSMAN S. €UNSAL, ADRIAN CRISTAL, AND

VELJKO MILUTINOVIĆ

A Survey of Research on Data Corruption in Cyber–Physical Critical Infrastructure Systems

MARK WOODARD, SAHRA SEDIGH SARVESTANI, AND ALI R. HURSON

A Research Overview of Tool-Supported Model-based Testing of Requirements-based

Designs

RALUCA MARINESCU, CRISTINA SECELEANU, HÈL�eNE LE GUEN, AND PAUL PETTERSSON

Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the

State-of-the-Art

SLIM BECHIKH, MAROUANE KESSENTINI, LAMJED BEN SAID, AND KHALED GH�eDIRA

Volume 99

Combinatorial Testing: Theory and Practice

D. RICHARD KUHN, RENEE BRYCE, FENG DUAN, LALEH SH. GHANDEHARI, YU LEI,

AND RAGHU N. KACKER

Constraint-Based Testing: An Emerging Trend in Software Testing

ARNAUD GOTLIEB

Automated Fault Localization: Advances and Challenges

WES MASRI

Recent Advances in Automatic Black-Box Testing

LEONARDO MARIANI, MAURO PEZZÈ, AND DANIELE ZUDDAS

Inroads in Testing Access Control

TEJEDDINE MOUELHI, DONIA EL KATEB, AND YVES LE TRAON

Volume 100

Power Management in Data Centers: Cost, Sustainability, and Demand Response

THANT ZIN OO, NGUYEN H. TRAN, CHOONG SEON HONG, SHAOLEI REN,

AND GANG QUAN

Energy-Efficient Big Data Analytics in Datacenters

FARHAD MEHDIPOUR, HAMID NOORI, AND BAHMAN JAVADI

Energy-Efficient and SLA-Based Resource Management in Cloud Data Centers

ALTINO M. SAMPAIO AND JORGE G. BARBOSA

Achieving Energy Efficiency in Datacenters by Virtual Machine Sizing,

Replication, and Placement

HADI GOUDARZI AND MASSOUD PEDRAM

170 Contents of Volumes in this Series

Communication-Awareness for Energy-Efficiency in Datacenters

SEYED MORTEZA NABAVINEJAD AND MAZIAR GOUDARZI

Volume 101

Security Testing: A Survey

MICHAEL FELDERER, MATTHIAS BÜCHLER, MARTIN JOHNS, ACHIM D. BRUCKER,

RUTH BREU, AND ALEXANDER PRETSCHNER

Recent Advances in Model-Based Testing

MARK UTTING, BRUNO LEGEARD, FABRICE BOUQUET, ELIZABETA FOURNERET,

FABIEN PEUREUX, AND ALEXANDRE VERNOTTE

On Testing Embedded Software

ABHIJEET BANERJEE, SUDIPTA CHATTOPADHYAY, AND ABHIK ROYCHOUDHURY

Advances in Web Application Testing, 2010–2014
SREEDEVI SAMPATH AND SARA SPRENKLE

Approaches and Tools for Automated End-to-End Web Testing

MAURIZIO LEOTTA, DIEGO CLERISSI, FILIPPO RICCA, AND PAOLO TONELLA

Volume 102

Advances in Software Engineering and Software Assurance

DAN SHOEMAKER, CAROL WOODY, AND NANCY R. MEAD

Privacy Challenges and Goals in mHealth Systems

FARZANA RAHMAN, IVOR D. ADDO AND SHEIKH IQBAL AHAMED, JI-JIANG YANG

AND QING WANG

A Survey of Data Cleansing Techniques for Cyber-Physical Critical Infrastructure Systems

MARK WOODARD, MICHAEL WISELY AND SAHRA SEDIGH SARVESTANI

Indexing and Querying Techniques for Moving Objects in Both Euclidean Space

and Road Network

LASANTHI HEENDALIYA, MICHAEL WISELY, DAN LIN, SAHRA SEDIGH SARVESTANI

AND ALI HURSON

171Contents of Volumes in this Series

This page intentionally left blank

	Front Cover
	Advances in Computers
	Copyright
	Contents
	Preface
	Chapter One: How Elasticity Property Plays an Important Role in the Cloud: A Survey
	1. Introduction
	2. Cloud Elasticity
	2.1. Elasticity Definitions
	2.2. Importance of Elasticity in the Cloud
	2.3. How to Measure Elasticity

	3. Existing Cloud Elasticity Solutions
	3.1. Classification of Cloud Elasticity Solutions
	3.1.1. Reactive Elasticity Solution
	3.1.2. Predictive Elasticity Solution
	3.1.3. Horizontal Scaling
	3.1.4. Vertical Scaling
	3.1.5. Migration

	3.2. How Current Cloud Service Providers Are Offering Elasticity

	4. Existing Research Issues of Cloud Elasticity
	4.1. Resource Availability
	4.2. Interoperability Between Clouds
	4.3. Resources Granularity Problem
	4.4. Start-Up Time Problem
	4.5. Elasticity Requirement
	4.6. Automated Elasticity Mechanism
	4.7. Oscillation Problem
	4.8. Auto-Scaling Metrics and Benchmarking Tools

	5. How Elasticity Can Be Improved in the Cloud
	5.1. How to Maximize Resource Availability in the Cloud?
	5.2. How to Minimize the Resource Provisioning Time in the Cloud
	5.3. How to Minimize the Resource Provisioning Cost in the Cloud?
	5.4. How to Predict Future Resource Demand in Cloud?

	6. Conclusion
	References

	Chapter Two: Input-Sensitive Profiling: A Survey
	1. Introduction
	2. Input-Sensitive Profiling Challenges
	3. Recent Researches on Input-Sensitive Profiling
	3.1. Input-Sensitive Profiling
	3.1.1. Summary
	3.1.2. Critique

	3.2. Search-Based Profiling
	3.2.1. Summary
	3.2.2. Critique

	3.3. Algorithmic Profiling
	3.3.1. Summary
	3.3.2. Critique

	3.4. Synthesis

	4. Related Work
	4.1. Scalability Problems
	4.2. Program Performance Prediction
	4.3. Code Optimization
	4.4. Task Scheduling Optimization
	4.5. Test Generation Analysis
	4.6. Data-Dependence Profiling

	5. Conclusion
	References

	Chapter Three: Recent Advances in Regression Testing Techniques
	1. Introduction
	2. Background
	3. Recent Advances in Regression Testing Techniques
	3.1. Regression Test Selection
	3.1.1. Data Sources and Techniques
	3.1.2. Evaluation Metrics
	3.1.3. Recent Advances

	3.2. Test Case Prioritization
	3.2.1. Data Sources and Techniques
	3.2.2. Evaluation Metrics
	3.2.3. Recent Advances

	3.3. Test Suite Minimization
	3.3.1. Data Sources and Techniques
	3.3.2. Evaluation Metrics
	3.3.3. Recent Advances

	3.4. Additional Remarks on Regression Testing Techniques

	4. Conclusions
	References

	Chapter Four: Coverage-Based Software Testing: Beyond Basic Test Requirements
	1. Introduction
	2. Definitions
	3. Early Techniques: Basic Coverage Criteria
	3.1. Function Coverage and Function-Pair Coverage
	3.2. Statement Coverage and Basic Block Coverage
	3.3. Branch Coverage
	3.4. Basic Logic Coverage

	4. Early Techniques: Advanced Coverage Criteria
	4.1. Def-Use Pair Coverage
	4.2. Active Clause Coverage

	5. Early Techniques: Profiling for Basic Coverage
	5.1. Profiling Structural Elements
	5.2. Profiling Logic Elements

	6. Efficient Profiling for Path Coverage
	6.1. Assigning Values to Edges
	6.2. Selecting Edges for Instrumentation
	6.3. Regenerating a Path from Its Value
	6.4. Dealing with Loops

	7. Test Case Generation for Path Coverage
	7.1. Static Symbolic Execution
	7.2. Dynamic Symbolic Execution

	8. Test Suite Minimization: Covering Complex tr´s
	8.1. Coverage-Based Test Suite Minimization
	8.2. Covering Complex Program Elements
	8.3. Motivating Example
	8.4. Empirical Study
	8.4.1. Experimental Setup
	8.4.2. Subject Programs and Test Suites
	8.4.3. Profile Characteristics
	8.4.4. Basic Coverage Maximization Results
	8.4.5. Observations and Cost Analysis

	9. Test Suite Minimization: Covering Combinations of Basic tr´s
	9.1. Test Suite Minimization
	9.2. Genetic Algorithm
	9.2.1. Chromosome Representation
	9.2.2. Fitness Function
	9.2.3. Population Generation
	9.2.4. Transformation Operator
	9.2.5. Acceptance Criterion
	9.2.6. Stopping Criterion
	9.2.7. Solution Set

	9.3. Experimental Work
	9.3.1. Minimization Results

	10. PBCOV: Property-Based Coverage Criterion
	10.1. Motivating Example
	10.2. PBCOV Design and Implementation
	10.3. Experimental Results

	11. UCov: User-Defined Coverage Criterion
	11.1. Definitions and Notation
	11.2. Motivation
	11.2.1. Example 1—Testing a Bug Fix
	11.2.2. Example 2—Testing Scenarios of an Algorithm
	11.2.3. Example 2—Testing Inactive Clauses

	12. Conclusion
	References

	Author Index
	Subject Index
	Contents of Volumes in this Series
	Back Cover

