
APPENDIX A

Case Study 4 - continued

To further investigate case study 4, we manually tracked down the code

change which rendered the test case obsolete and found out that it is related

to the use of a modified constructor of the URL class in method openStream in

StdXMLReader.java. Noting that if the new constructor is replaced by the

original one, [[s4]btr, 2, _]rtr and [<[s4]btr, [s4]btr>]str would then be covered.

Shown below are: (a) the original code in NanoXML_v1, and (b) the modified

code in NanoXML_v3 that renders test case {Parser1_vw_v1.java,

testvw_29.xml} obsolete.

public Reader openStream(String publicID,

 String systemID)

 throws MalformedURLException,

 FileNotFoundException,

 IOException

{

 systemID = “file:” + systemID;

 URL url = new URL(systemID);

 . . .

(a)

public Reader openStream(String publicID,

 String systemID)

 throws MalformedURLException,

 FileNotFoundException,

 IOException

{

 URL url = new URL(this.currentSystemID, systemID);

 . . .

(b)

APPENDIX B

Case Study 8 - continued

Bug ID Description

LOGBRIDGE-2 The bug is an inconsistency between log levels that causes

bug JBCTS-634 to resurface. If JBCTS-634 was guarded

with a UCov test requirement, this might have been

avoided.

RAILO-2351 The bug was fixed and then resurrected 14 months later.

A null value is not allowed as a value with a configuration

that specifically allows “full null support”.

JBSEAM-1501 The developer could not reproduce the constructor

exception anymore, closed the issue, and documented that

the team should watch for a resurrection. Evidently, the

bug resurrected, and the issue was opened and fixed six

weeks later.

JBESB-3305 Cache session issue seen with the JBoss Messaging Queue

module, then resurrects while integrating with the IBM

Messaging Queue.

MODE-921 Two dependency jar files contain files with the same

names. The issue resurfaced (see MODE-925). UCov tr

syntax needs to be extended to support runtime

environment syntax to be able to avoid this resurrection.

JBIDE-10755 The issue is a wrong invocation of the module. The

resurrection is recorded but the original bug is not

mentioned. The team was worried about similar wrong

invocations in other parts of the project and documented a

need to watch for a resurrection.

ORG-1066 The issue resurfaces in a production release after few

months and gets reopened. The resurrection issue was

noticed, however, was not reproducible, and the team

related this to a caching mechanism obscure to them.

They close the issue with an acknowledgement that they

do not know whether this was fixed or not.

WELD-316 This is an issue that the testing team could not duplicate.

They closed it and they are waiting for it to resurface to

reopen it. We think that a better strategy is to introduce a

UCov test requirement even if that is not covered now,

and wait for it to be covered, rather than wait for a client

to report another failure that can be reproduced.

JBESB-851 This was mistaken to be a resurrected bug. It took 3 days

to figure out it is not. A better bug and bug fix

documentation mechanism such as UCov might have

saved that time.

GUVNOR-215 Confusion about a resurrected bug caused the team to

work on the wrong track and delayed the actual fixes.

JBNMAN-188 The bug was first thought to be a resurrection of another

bug, however, when the prescribed workarounds were

tried, the fail persisted and then the actual work started.

An accurate bug/bug fix description as a test requirement

would have helped to avoid that. UCov current syntax

does not support that since the issue is a build and

runtime environment issue.

JBREM-1043 This is a configuration issue that was fixed before and

resurrected. The team could not locally reproduce, worked

around it with a different configuration, and similarly to

issue JBNMAN-188 closes awaiting another resurrection

to be reported by a client.

ISPN-3307 -

// P1
public static boolean isPrime(int x) {
 if (x <= 1) return false;
 else if (x == 2) return true;
 else {
 int UpperLimit = (int) (Math.sqrt (x) +1);
 for(int divisor = 2 ; divisor <= UpperLimit ; divisor++){
 s0 if(x % divisor != 0) { // bug: should be ==
 s1 return false;
 }
 }
 s2 return true;
 }
}

// P2
public static boolean isPrime(int x) {
 if (x <= 1) return false;
 else if (x == 2) return true;
 else {
 int UpperLimit = (int) (Math.sqrt (x) +1);
 for(int divisor = 2 ; divisor <= UpperLimit ; divisor++){
 s0 if(x % divisor == 0) { // bug is fixed
 s1 return false;
 }
 }
 s2 return true;
 }
}

APPENDIX C

Example with a Simple User-Defined Test Requirement

Method isPrime(int x) is meant to return true if x is a prime number, and false

otherwise. P1 is a faulty implementation of isPrime(int x) where the bug is in

statement s0.

Assume that we are set to incrementally build a test suite T that achieves

full statement coverage. Starting with x = 1, we select 6 test cases that

cumulatively cover all the statements in P1, namely, t1:{1, false}, t2:{2, true},

t3:{3, true}, t4:{4, false}, t5:{5, true}, and t6:{6, false}. Note how due to the bug

at s0, t3 and t6 return unexpected values, i.e., they are failing test cases. And

since t4 and t5 do not increase coverage, they are ignored, thus, leading to T1 =

{t1, t2, t3, t6}, which yields full statement coverage.

As a result of t3 and t6 the bug is revealed and fixed in P2. Also, applying

UCov, t3 is coupled with test requirement [<[s0]btr, [s2]btr>]str and t6 is coupled

with test requirement [<[s0]btr, [s1]btr>]str.

// P3
public static boolean isPrime(int x) {
 if (x <= 1) return false;
 else if (x == 2) return true;
 else if (x % 2 == 0) return false; // Added Code
 else {
 int UpperLimit = (int) (Math.sqrt (x) +1);
 for(int divisor=3 ; divisor <= UpperLimit ; divisor+=2){ // modified code
 s0 if(x % divisor == 0) {
 s1 return false;
 }
 }
 s2 return true;
 }
}

In case P2 is refactored into P3 shown below, UCov detects that the intents of

t3 and t6 are not preserved anymore, since s0 is not executed in either case.

Consequently, the user would replace t3 by t7 = {7, true} which covers {s0, s2},

and t6 by t9 = {9, false} which covers {s0, s1}. Now the test suite becomes T2 =

{t1, t2, t7, t9} as opposed to T1 = {t1, t2, t3, t6}. Note how if the user kept T1, s0

and s1 (and the bug fix) would not be exercised.

Alternatively, if instead of applying UCov, the tester tried to achieve full

statement coverage, she would realize that T1 = {t1, t2, t3, t6} is deficient for P3,

and that any test suite that achieves full coverage, would actually cover the

bug fix. That is, in this example, full statement coverage is as effective as

UCov.

