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Abstract. The problem of writing a functional specification which re-
flects the intentions of the developer has long been recognized as fun-
damental. We propose a method to construct (synthesize) a functional
specification for a terminating program which takes a single input and
produces a single output. The specification consists of a precondition
and a postcondition, expressed as first-order logic wff’s, including quan-
tifiers. The user provides an underlying type theory for the variables used
to write the specification, and also answers a series of queries, which make
precise her intentions. Each query presents an example of the relevant
data: input for precondition, input-output pair for postcondition. The
developer states whether the precondition (postcondition, respectively)
being written should hold or not (according to the users intentions).
By grouping examples into equivalence classes, we reduce the number
of queries to finite. After one query for each equivalence class has been
answered, the method outputs a formula for the precondition (postcondi-
tion, respectively) that the user intends. By using various pruning strate-
gies, and by constructing a formula using simpler formulae that have been
previously constructed, we further reduce the number of queries to the
point that our method is practical. Our method constructed, in reason-
able time, accurate specifications for array search, binary heap, binary
search, linked list, and trie.

1 Introduction

The task of writing a (formal) specification has long been recognized as cru-
cial, cf. Brooks [1], and is addressed by many requirements elicitation methods,
e.g., [2–6], The derivation of programs and their correctness proofs from for-
mal specifications has been advocated by Dijkstra, Hoare, and others. Recent
program synthesis techniques require formal specifications [7, 8] as input.

We present a method for writing a formal functional specification for a trans-
formational, terminating program P, which takes a single input and produces a
single output. We assume that the user has an informal idea of how P should
behave, and that (1) given an input, the user can judge whether the input is irrel-
evant (need not be processed correctly) or relevant (must be processed correctly),
and (2) given an output corresponding to the input, the user can judge whether
the output is correct w.r.t the input, or not. For example, for binary search, an
ordered array is relevant and an unordered one is not. A correct output is the
location of the sought value, or an indication of its absence. This assumption
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on user behavior is key to program synthesis techniques such as [9–11], which
generate programs from user provided inputs and outputs.

Code snippet program synthesis techniques require the user to provide the
specification as a starting point [8,12,13]. SQL query synthesis techniques require
the user to provide a set of inputs and outputs [9]. Techniques for synthesizing
recursive programs [10] and mobile automation scripts [11] additionally require
a set of program building blocks. The techniques [11, 13] require in addition an
interactive construction process where the user provides feedback. Techniques
that build loop free programs [14] require basic components and user answers
to SMT solver generated queries. Except for the techniques that start from a
specification, the user is left with no notion of correctness except her judgment.

This paper presents a novel method that constructs an accurate specification
in first order logic (including quantifiers) and that only requires the user to (1)
provide a set of variable declarations that forms a type theory, (2) describe the
variables as index, bound, or data variables w.r.t. array variables in a simple
grammar, and (3) judge a sequence of variable valuations generated using an
SMT solver. To our knowledge, our technique is the first to produce specifica-
tions with quantified formulae. Our method guarantees accurate specifications
provided that the user makes all judgments correctly. Experiments with under-
grad and graduate computer engineering students produced array search, binary
heap, binary search, linked list, and trie specifications in reasonable time. These
were more accurate than manually written specifications.

Overview. A single input-output pair is a behavior. We model the user’s
intuition as a (possibly infinite) set of judgments over inputs and behaviors, and
we formalize this intuition as a specification S, i.e., a precondition-postcondition
pair (P,Q), expressed as first-order logic formulae. A precondition is evaluated
over an input, and a postcondition is evaluated over a behavior. We produce a
specification which is accurate, i.e., reflects the user’s intentions:
1. The precondition holds for an input iff the user judges the input relevant.
2. The postcondition holds for a behavior if the user either judges the input

irrelevant (dont care) or judges the output correct w.r.t. the input.
Figure 1(a) shows this relationship, for an accurate specification, between the
user judgments of the input and output, and the required values for the precondi-
tion and postcondition, where ‘?’ indicates a “dont care,” i.e., the postcondition
can be true or false. We use “accurate” rather than “correct” so as to not over-
load the term “correct”, which usually means correct w.r.t. a specification.

We motivate with an example: sorting two integers x and y. The user judges
all possible input values as relevant, and so true is an accurate precondition. A
formula for the accurate postcondition is Q , [(xi = xo∧yi = yo)∨(xi = yo∧yi =
xo)] ∧ xo 6 yo, i.e., the final values of x, y are an ordered permutation of the
initial values. Subscripts of i, o indicate the initial and final values, respectively.
Consider the inaccurate Q1 , (xi = xo ∧ yi = yo) ∧ xo 6 yo. For xi = 1,
yi = 2, xo = 1, yo = 2, we have Q = tt and Q1 = tt , and for xi = 2, yi = 1,
xo = 1, yo = 2, we have Q = tt and Q1 = ff , where tt and ff denote true and
false respectively. This example shows that an inaccurate postcondition may still
match an accurate one in some cases, so sporadic checking of some behaviors
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Input is
relevant irrelevant
P is true P is false

Output is
correct Q is true Q is ?

P is true P is false
Output is
incorrect Q is false Q is ?

f3 ¬f3
f1 F1 F2 F3 F4 ¬f2

F5 F6 F7 F8 f2
¬f1 F9 F10 F11 F12

F13 F14 F15 F16 ¬f2
¬f4 f4 ¬f4

unsat valuation formula conflict similar

F1 = f1 ∧ ¬f2 ∧ f3 ∧ ¬f4 f1,¬f2 F2, F3, F4

f3,¬f4 F5, F9, F13

F8 = f1 ∧ f2 ∧ ¬f3 ∧ ¬f4 f1,¬f4 F1, F4, F5

F16 = ¬f1 ∧ ¬f2 ∧ ¬f3 ∧ ¬f4 all

(a) (c) (e)

f1 , 0 = i

f2 , 0 6 i

f3 , i = |a| − 1

f4 , i 6 |a| − 1

f3
f1 unsat u-c u-c u-c

u-c σ1 σ2 unsat f2
u-c σ3 σ4 σ5

u-c σ6 σ7 unsat

f4

valuation formula i a

F6 = f1 ∧ f2 ∧ f3 ∧ f4 0 〈0〉 σ1

F7 = f1 ∧ f2 ∧ ¬f3 ∧ f4 0 〈0, 0〉 σ2

F10 = ¬f1 ∧ f2 ∧ f3 ∧ f4 1 〈0, 0〉 σ3

F11 = ¬f1 ∧ f2 ∧ ¬f3 ∧ f4 1 〈0, 0, 0〉 σ4

F12 = ¬f1 ∧ f2 ∧ ¬f3 ∧ ¬f4 3 〈0, 0, 0〉 σ5

F14 = ¬f1 ∧ ¬f2 ∧ f3 ∧ f4 -1 〈〉 σ6

F15 = ¬f1 ∧ ¬f2 ∧ ¬f3 ∧ f4 -1 〈0〉 σ7

(b) (d) (f)

Fig. 1: (a) User judgment and pre/post-condition values in an accurate specification.
(b) formulae of isvalid from the binary-heap example (Figure 2). (c) Karnaugh map
of 16 valuation formulae. (d) classification of F1 − F16. (e) unsatisfiable formulae. (f)
reduction to 7 judgments and 10 solver calls (6 and 8 with pruning-Section 4.4).

is insufficient. However, we cannot check the infinite number (in general) of all
behaviors. Hence we partition the set of all behaviors into a finite number of
equivalence classes, and check one representative from each equivalence class.

The key idea is to use a theory (set of first order formulae) as “primitive
building blocks” to write the formulae for precondition P and postcondition Q.
For the above example, the relevant theory is the formulae expressing = and
< between all pairs of xi, xo, yi, yo. This results in 12 formulae. Each possible
assignment of values to these 12 formulae generates an equivalence class of the set
of behaviors. Thus we reduce the problem from considering an infinite number
of cases to considering a finite but large (212) number of cases. We show in the
sequel how to reduce this to a reasonable number, using various pruning tactics.

Consider next the validity of an array index. Figure 1(b) shows a theory of
four formulae that compare index i to 0 and |a| − 1, the bounds of array a (|a|
denotes the size of a). There are 16 Boolean valuations of these four formulae, as
shown in the Karnaugh map in Figure 1(c). Each valuation determines an equiv-
alence class of behaviors, namely those for which the formulae have the assigned
values. We convert each valuation into the corresponding “valuation formula” in
the obvious manner, as shown. This formula characterizes the same equivalence
class of behaviors, namely those which satisfy it. We take a representative “valu-
ation behavior” for each equivalence class and determine which of the valuation
behaviors are correct. We then take the disjunction of the corresponding valua-
tion formulae. Here, the assignments σ1, σ2, σ3, and σ4 (Figure 1(f)) are correct
behaviors that correspond to F6 = f1 ∧ f2 ∧ f3 ∧ f4, F7 = f1 ∧ f2 ∧ ¬f3 ∧ f4,
F10 = ¬f1 ∧ f2 ∧ f3 ∧ f4, and F11 = ¬f1 ∧ f2 ∧ ¬f3 ∧ f4, respectively. The dis-
junction F6 ∨ F7 ∨ F10 ∨ F11 simplifies to f2 ∧ f4 = 0 6 i ∧ i 6 |a| − 1 which is
accurately the specification.

To convert the above into an effective procedure, we need to
1. generate a representative behavior from each valuation formula, and
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2. classify each representative behavior as correct or incorrect.
We deal with (1) by submitting the valuation formula to an SMT solver, which,
if satisfiable, will return a satisfying assignment. Since the assignment is over all
the input and output values, we can interpret it as a behavior. We deal with (2)
by invoking the user as an oracle: the user will interact with the algorithm, and
will judge in turn the behavior of each valuation formula as correct or incorrect.

To turn the effective procedure into a practical and useful tool, we have to:
1. Give pruning techniques (Section 4), since the number of valuation formulae

is exponential in the theory size.
2. Avoid using large and complex theories, as this makes the number of valu-

ation formulae impractical. Thus Section 6 presents a means for construct-
ing theories incrementally and hierarchically using simpler specifications as
building blocks. This also helps us generate succinct and readable formulae.

3. The above method uses only Boolean operators to construct formulae. Sec-
tion 6.1 presents a method that also uses quantifiers.

4. We must restrict the SMT solver queries to those which state-of-the-art
solvers can decide. Section 5 shows how we do this.
Our method constructs a specification that can be used (1) early in the soft-

ware development cycle to synthesize an implementation of the intended pro-
gram, (2) later to formally verify the correctness of an existing implementation,
and (3) periodically by using the generated test inputs that satisfy the precon-
dition as test cases against the implementation. It has the following advantages.

Advantage 1: Our method helps users with basic logic skills write accurate
specifications. The user must only provide data types and intended use of the
variables as index, bound, or data variables, and judge whether an assignment of
those variables is correct or not. The program that we are writing a specification
for can be represented as a Java method. The variables used in the specification
are given as parameters of the method. The constructed specification is in first
order logic; e.g., expressible in Java Modeling Language and Alloy.

Advantage 2: Our method can build specifications that are in a decidable
fragment of first-order logic. This is very useful for formal verification and syn-
thesis of programs, and also for assertion-based testing techniques [15–17].

Advantage 3: The SMT solver generated behaviors, along with the user
judgments, can be used as test cases in a unit testing environment such as JUnit,
for the end result program. The resulting test suite has high coverage since each
test case represents a unique equivalence class. Reciprocally, existing test suites
can be used to answer user queries, so the user is only burdened with queries
whose equivalence classes are not represented in the test suite.

Advantage 4: Like interactive techniques that construct proofs [18,19] and
bridge the gap between verification engineers and automated proof techniques,
our method also bridges the gap between programmers and logic specifications.

2 Motivating Examples

The example in Figure 2 shows the construction of a binary heap specifica-
tion. The user starts by declaring the array a that constitutes the binary heap.
The user declares isvalid to specify a valid index in the array a. The type
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1 input: class binary-heap {
2 int [] a;
3 constants {1,2};

4 theory isvalid (int i) {
5 grammar {(a,i,index);}}

6 theory isleft (int i, int left) {
7 predicate isvalid;
8 grammar {(a,i,index),(a,left,index);}}

9 theory isright (int i, int right) {
10 predicate isvalid;
11 grammar {(a,i,index),(a,right,index);}}

12 theory isnotheap {
13 // quantified variables i and j will
14 // be injected as indices of a
15 predicate isleft, isright, isvalid;
16 grammar {(a,a,<=);}}}

query: i=-1,j=1,a=[0 0]
user answer: not correct because of i
...
query: i=0,j=1,a=[2 1]
user answer: correct (isnotheap)
...

Specifications:
isvalid: (0<= i) & (i<= a.size - 1)
isleft: isvalid(i)& isvalid(left)& left=2*i+1
isright:isvalid(i)& isvalid(right)& right=2*i+2
isnotheap: exists i,j. isvalid(i)& isvalid(j)&
(isleft(i,j)| isright(i,j))& not (a[i]<=a[j])

Fig. 2: Binary heap theories, ConstructFormula queries, and specifications

theory of isvalid includes the members of the binary heap class and the inte-
ger i. The grammar declares i as index of array a. The user runs our method,
answers 6 queries, and gets the formula for isvalid, as shown in Figure 1. The
user then declares the isleft predicate with i and left as indices of array a
and declares the intent to use isvalid from the previous hierarchy level. The
user answers 8 queries and gets the specification that constrains i and left
to be valid indices of a and left to be 2*i+1. Similarly the user constructs
the isright predicate. Finally, the user declares a theory for the binary heap
specification, and declares the intent to use the predicates from previous levels
in the hierarchy. The user answers up to 14 queries marking the assignments
that are not heaps as “correct” and those that are heaps as “incorrect” and gets
the isnotheap specification. Figure 2 also shows the constructed specifications
and example queries that the user answered appropriately for isnotheap. The
isheap specification is the negation. The user constructed the negated formula
since she is aware that the method generates an existentially quantified formula.

Similarly, we produce the specification (0 6 ` 6 r 6 |a|−1)∧
(
(rv 6= −1∧e =

a[rv]∧eina(a, `, r, e))∨(rv = −1∧¬eina(a, `, r, e))
)

for searching an array, where
eina(a, `, r, e) , ∃i.isvalid(`) ∧ isvalid(r) ∧ ` 6 r ∧ ` 6 i ∧ i 6 r ∧ a[i] = e.
eina(a, `, r, e) was produced at the previous level in the hierarchy. `, r are the
left and right bounds of the section of a to be searched. rv is the index of a
location of e within this section, or -1 if e is not present.

3 The Specification and Formula Construction Problems

We write specifications for terminating sequential programs with a fixed set
x1, . . . , xn of program variables, which take values from universes U1, . . . , Un, re-
spectively. We use many-sorted first-order logic.We assume the usual definitions
for first-order language, well-formed formula (we just say “formula”), first-order
structure, truth in a structure, etc. The variables of our first-order language L
include xi1, . . . , x

i
n, which represent, respectively, the initial values of x1, . . . , xn,

and xo1, . . . , x
o
n, which represent, respectively, the final values of x1, . . . , xn. These

are the only variables in L which occur free. All other variables occur bound.
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Definition 1 (Input state, output state, behavior). An input state σi :
〈xi1, . . . , xin〉 → U1 × · · · ×Un is an assignment that maps each xij, j ∈ [1 : n], to
a value in Uj, and likewise for an output state σo : 〈xo1, . . . , xon〉 → U1×· · ·×Un.
A behavior σ = (σi, σo) is a pair consisting of an input and an output state.

A formula is interpreted in a many-sorted structure (I, σ), with universes
U1, . . . , Un. I provides the interpretation for the functions and predicate symbols.
σ is a behavior, and provides the interpretation for the xi1, . . . , x

i
n, x

o
1, . . . , x

o
n.

Definition 2 (Satisfaction of a formula). Let f be a formula. Write (I, σ) |=
f iff f is true in the structure (I, σ), according to usual Tarskian semantics. We
omit I, as it is fixed, and write σ |= f . Write σ.f for the truth value of f in
(I, σ). [f ] denotes {σ | σ |= f}, i.e., the set of behaviors where f holds.

Definition 3 (Specification, satisfaction of a specification). A specifica-
tion S = (P,Q), consists of: P which represents the precondition, and is re-
stricted to contain only xi1, . . . , x

i
n, and Q, which represents the postcondition. A

behavior σ = (σi, σo) satisfies a specification S = (P,Q) iff σ.(P ⇒ Q) = true.
Write σ |= S in this case, and σ 6|= S otherwise. Also define [S] , {σ | σ |= S}.

Let Σ be the set of behaviors. We partition Σ into:
– good = {σ | σ.P = true and σ.Q = true}, the set of good behaviors; the

precondition holds before and the postcondition holds after.
– bad = {σ | σ.P = true and σ.Q = false}, the set of bad behaviors; the

precondition holds before and the postcondition does not hold after.
– dontCare = {σ | σ.P = false}, the set of don’t care behaviors; the precon-

dition does not hold before, and the postcondition is unrestricted.
A partition (good, bad, dontCare) of Σ is feasible iff (1) for every input state σi,
there do not exist two output states σo, σo′ such that (σi, σo) ∈ good ∪ bad and
(σi, σo′) ∈ dontCare); and (2) for every input state σi there exists an output state
σo such that (σi, σo) ∈ good∪dontCare). Clause (1) means that the precondition
is not both true ((σi, σo) ∈ good ∪ bad) and false ((σi, σo′) ∈ dontCare) when
evaluated on input σi. Clause (2) means that for every input there is at least
one acceptable output. In the sequel, we consider only feasible partitions of Σ.

We construct a specification that accurately reflects the intentions of the
user, which are given by a feasible partition (good, bad, dontCare) of Σ. The
user provides information about this partition by answering queries about the
location of given example inputs and behaviors within this partition.

Definition 4 (Specification construction problem). A specification S is
accurate w.r.t. a feasible partition (good, bad, dontCare) of Σ iff [S] = good ∪
dontCare. The specification construction problem is to write a specification that
is accurate w.r.t. a given (good, bad, dontCare).

Definition 5 (Formula construction problem). A wff F is accurate with
respect to a partition (vtt , vff ) of Σ iff [F ] = vtt. The formula construction
problem is to write a wff that is accurate w.r.t. a given (vtt , vff ).
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We reduce specification construction to formula construction, as follows. Con-
struct a formula P that is accurate w.r.t. (good∪bad, dontCare). Also construct
a formula Q that is accurate w.r.t. (good∪φ, bad∪ψ), where (φ, ψ) is an arbitrary
partition of dontCare, which can be chosen for convenience of expressingQ. From
the definitions of σ |= S and [S] given above, we obtain [S] = good ∪ dontCare,
and so S is accurate with respect to (good, bad, dontCare).

4 Construction of Formulae via Boolean Operations

We present below algorithm ConstructFormula, which constructs a formula in
disjunctive normal form, where the literals are assignments to “more elementary”
formulae, drawn from either the underlying type theory τ , or a “vocabulary” ν,
as discussed below. These are theories (sets of wffs) in first order logic. τ is
the type theory for the program variables x1, . . . , xn. ν is a set of formulae
that are constructed by prior applications of ConstructFormula, so that we can
use ConstructFormula incrementally to build up complex formulae. We deal only
with finite theories here. We show in Section 5.1 how to extend our method
to infinite theories, i.e., countably infinite sets of wff’s. Given a finite theory,
ConstructFormula iterates through all possible valuations of the formulae, checks
if the valuation can be satisfied, and presents a satisfying assignment (if any),
to the user. If user judges this assignment in vtt , then ConstructFormula converts
the valuation into a conjunctive clause and disjoins it into the formula being
constructed. If user judges this assignment in vff , then ConstructFormula does
not alter the formula being constructed. In the worst case, the number of user
queries is 2|ε| where ε is the type theory or vocabulary being used.

Let F be a finite set of first order wff’s. V : F → {tt ,ff } is a Boolean
valuation of F , i.e., a mapping that assigns to each f ∈ F a truth-value. Write
F 7→ {tt ,ff } for the set of valuations of F . Define fm(V ) , (

∧
f ∈ F : f ≡ V.f),

i.e., fm(V ) is the formula which asserts that each f ∈ F has the truth value
assigned to it by V . We call fm(V ) a valuation formula. Define [V ] , {σ | σ ∈
Σ and (for all f ∈ F : σ.f = V.f)}, i.e., [V ] is the set of all behaviors that assign
the same values to the formulae in F that V does. Note that [V ] = [fm(V )].
Define F∼ = {〈σ, σ′〉 | (for all f ∈ F : σ.f = σ′.f)}. F∼ then is the equivalence
relation on Σ that considers two behaviors equivalent iff they assign the same
values to the formulae in F . Define Σ/F∼ = {[V ] | V ∈ F 7→ {tt ,ff }}. Σ/F∼ is
the partition of Σ induced by F∼. We assume the standard definitions for one
partition of Σ being finer (coarser) than another, and write Σ/E 6 Σ/E′ when
Σ/E is finer than Σ/E′.

4.1 Type theory

The type theory τ defines the universes U1, . . . , Un for the free variables xi1, . . . , x
i
n

and xo1, . . . , x
o
n and provides axioms for their operations. It represents the “finest

granularity of expression” that we have. We construct a formula F in disjunctive
normal form: F =

∨
i(
∧
j Fij). Hence [F ] =

⋃
i(
⋂
j [Fij ]). Assume that the Fij

are formulae (or their negations) from τ . Hence [Fij ] is a union of equivalence
classes of Σ/τ , namely all those classes where Fij holds. Hence

⋃
i(
⋂
j [Fij ]) is

also a union of equivalence classes of Σ/τ , since Σ/τ is a partition of Σ. If
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some Fij are not formulae of τ , but are the result of prior applications of Con-
structFormula, then this still holds, by induction on the number of applications
of ConstructFormula. Hence [F ] is a union of equivalence classes of Σ/τ .

A solution F to the formula construction problem satisfies [F ] = vtt . This
implies that vtt is a union of equivalence classes of Σ/τ . However, vtt is arbi-
trary, since it is defined by the user: the user provides information about vtt
by answering membership queries for vtt . Hence, for a solution to the formula
construction problem to exist, we must assume the following axiom, which we
take for given in the sequel:

Σ/τ 6 {vtt , vff } Axiom-T

Proposition 1. Let F = (
∨
Vτ : Vτ ∈ τ 7→ {tt ,ff } ∧ [Vτ ] ⊆ vtt : fm(Vτ )). Then

[F ] = vtt, and so F is a solution to the formula construction problem.

Often, τ will contain a large number of formulae, and since the number of user
queries is O(2|τ |), this may be impractical. We reduce the number of user queries
by using, in place of τ , a vocabulary.

4.2 Vocabulary

A vocabulary is concerned with the particular concepts that go into a specifica-
tion. Consider a specification for searching an array a for a value e. This uses
the sub-concept “e occurs in a”. Given a formula for this, e.g., (∃i : 0 6 i <
|a| : a[i] = e), it is easier and faster to write an accurate specification than it
would be using only basic type theory for the integers. It also requires fewer
sub-formulae, resulting in fewer user queries.

Starting from type theory τ , we write formulae for simple concepts. We use
this “first level” vocabulary to write more complex concepts, constituting a “sec-
ond level” vocabulary. So level-by-level we build up more complex formulae.

We showed above that for any formula F written by ConstructFormula, [F ]
is a union of equivalence classes of Σ/τ . Since all the formulae in a vocabulary
ν are either formulae of τ or are written by ConstructFormula, we conclude that
for all f ∈ ν: [f ] is a union of equivalence classes of Σ/τ . This implies that
Σ/τ 6 Σ/ν. Since Σ/ν is coarser than Σ/τ , it is possible that Σ/ν is not finer
than {vtt , vff }. This means that the vocabulary ν cannot express the intended
partition {vtt , vff }, since some key concept is not expressed as a formula of ν. For
example, consider array sorting, and a ν which includes ordering of output ele-
ments, but not equality of input and output elements. A formula F constructed
from ν can express that the output array is ordered, but cannot express that
the output array is a permutation of the input. To be able to express {vtt , vff }
using a formula constructed from ν, we require that ν is adequate:

Definition 6 (Adequacy). ν is adequate iff Σ/ν 6 {vtt , vff }

that is, for each valuation Vν of ν, [Vν ] is wholly contained in vtt or in vff . Unlike
the situation for τ , we cannot take Σ/ν 6 {vtt , vff } as an axiom, since ν can
contain arbitrarily coarse formulae, i.e., formulae f with large [f ]. In practice,
we want the coarsest formulae possible, since this reduces the number of user
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queries. The risk is that Σ/ν is too coarse, violating Σ/ν 6 {vtt , vff }, and has
to be corrected. A heuristic for adequacy of ν is that ν contains formulae for
every concept in an informal description of the problem, e.g., for both ordering
and permutation in the case of array sorting.

The full paper presents MakeAdequate(ν, ε, vtt , vff ), which checks adequacy of
ν. Here ε is a lower level adequate theory (type theory or a lower level vocabulary)
from which ν is constructed, i.e., formulae of ν are Boolean combinations of
formulae of ε. MakeAdequate makes 2|ε| queries to the user. MakeAdequate either
verifies adequacy of ν, or returns a set of “correction formulae” whose addition
to ν makes it adequate.

Assume in the sequel that ν is adequate. Then the union of all [Vν ] contained
in vtt is exactly vtt : vtt = (

⋃
Vν : Vν ∈ ν 7→ {tt ,ff } ∧ [Vν ] ⊆ vtt : [Vν ]). Hence:

Proposition 2. Let F = (
∨
Vν : Vν ∈ ν 7→ {tt ,ff } ∧ [Vν ] ⊆ vtt : fm(Vν)). Then

[F ] = vtt, and so F is a solution to the formula construction problem.

4.3 The ConstructFormula Algorithm

Algorithm ConstructFormula, given in Figure 3, takes as input the partition
{vtt , vff } that the user intends, and a vocabulary ν that is adequate w.r.t. this
partition. It evaluates F = (

∨
Vν : Vν ∈ ν 7→ {tt ,ff } ∧ [Vν ] ⊆ vtt : fm(Vν)). We

start with F set to false, and iterate through the valuations Vν . For each Vν , we
submit fm(Vν) to a Satisfiability-modulo-theory (SMT) solver, e.g., Z3 [20]. An
SMT solver takes as input a formula in a defined theory under first order logic.
The SMT solver produces one of these three possible outcomes: (1) it exhausts
its computational resources, (2) it returns a satisfying assignment for fm(Vν), or
(3) it returns that fm(Vν) is unsatisfiable.

In case (1), ConstructFormula terminates with failure. Feedback from the
failed attempt can be used to modify the problem, e.g., by changing ν, and
then re-attempting. In case (2), a satisfying assignment is a behavior σ ∈ Σ.
We present σ to the user, who judges whether σ ∈ vtt or σ ∈ vff . If the user
responds “in vtt”, then, by Definition 6, we have [Vν ] ⊆ vtt . Hence we update
F by disjoining fm(Vν) to it, as indicated by F := F _ “ ∨ ” _ fm(Vν) in
Figure 3, where _ denotes string concatenation, i.e., we are constructing the
text of the formula F as a concatenation of disjuncts. In case (3), we conclude, by
Definition 6, that [Vν ] ⊆ vff , so we do not alter F . We annotate the pseudocode
in Figure 3 with a loop invariant and some Hoare-style annotations. Theorem 1
below follows (proof in Appendix A).

Theorem 1 (Correctness of ConstructFormula). Assume that (1) ν is ade-
quate for {vtt , vff } and (2) that no invocation of the SMT solver by Construct-
Formula fails, and (3) the user responds accurately to all queries. Then Con-
structFormula (ν, vtt , vff ) returns formula F such that [F ] = vtt.

4.4 Complexity and optimization

The running time of ConstructFormula is at most 2|ν| calls to the SMT solver. It
also makes at most 2|ν| queries to the user. We discuss next optimizations that
reduce the number of SMT and user queries.
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ConstructFormula(ν, vtt , vff )
1. { Precondition: {vtt , vff } partitions Σ and Σ/ν 6 {vtt , vff } }
2. F := false; ϕ := ν 7→ {tt ,ff }
3. { Invariant: F ≡ (

W
Vν : Vν ∈ (ν 7→ {tt ,ff })− ϕ ∧ [Vν ] ⊆ vtt : fm(Vν)) }

4. while ϕ 6= ∅
5. select some valuation Vν ∈ ϕ;
6. ϕ := ϕ− {Vν};
7. submit fm(Vν) to an SMT solver;
8. if the solver fails then return(“failure”); return with failure
9. if fm(Vν) is satisfiable then
10. let σv be the returned satisfying assignment;
11. query the developer: is σv in vtt or in vff ?
12. if developer answers σv ∈ vtt then F := F _ “ ∨ ”_ fm(Vν);
13. else ϕ := ϕ− partialAssignment(σv); see Section 4.4
14. else solver returned unsat
15. ϕ := ϕ− unsat where unsat is the unsat core valuations; see Section 4.4
16. endwhile;
17. { Postcondition: F ≡ (

W
Vν : Vν ∈ ν 7→ {tt ,ff } ∧ [Vν ] ⊆ vtt : fm(Vν)) }

18. simplify F using ABC [21] and ESPRESSO [22];
19. return(F);

Fig. 3: ConstructFormula(ν, vtt , vff )

Unsat-core elimination When fm(Vν) is found to be unsatisfiable, we obtain the
unsat core from the SMT solver, and eliminate from consideration all Vν that
are extensions of the unsat core, since these are all unsatisfiable. This happens
automatically, without user involvement; Line 15 in Figure 3. Figures 1(e,f) show
the unsat classification of F1 and the six eliminated unsat core (u-c) formula
valuations, illustrated in orange color.

Partial-assignment elimination The user can eliminate many valuations at once.
When the user judges a behavior to be in vff , she can select a subset of the
variables assigned as the real reason for the choice (“V” option in the tool). The
partial assignment selected by the user may leave some formulae in ν without a
well-defined truth value. Consider assignment σ6 that was judged incorrect by
the user in the index validity specification of Figure 1. The user can use the
“V” option in the tool to select the negative value of i as the reason for the
judgment. The partial assignment selected by the user evaluates f1 and f2 to
false and leaves f3 and f4 undefined since they depend on |a|. Hence we classify
all valuation formulae corresponding to ¬f1 ∧¬f2 (namely F14, F15, and F16) as
in vff . Hence we eliminated two queries to the solver and the user.

Alternatively, the user can directly select ¬f1,¬f2 as offending, using the
“B” option in the tool. All extensions of ¬f1 ∧¬f2 are eliminated. “V” and “B”
eliminations are represented by line ϕ := ϕ− partialAssignment(σv) in Figure 3.

5 Decidability and Finiteness Considerations

ConstructFormula may fail if the SMT solver fails on some call, i.e., fails to decide
satisfiability of some fm(Vν) formula. Restricting the syntax of fm(Vν) formulae
to decidable fragments of first order logic avoids this problem. Examples are
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fragments solvable in a finite domain, such as equality, monadic, and quantifier
free theories [23]. Also, Bradley et. al. [24] take a formula in a restricted syn-
tactic form (array property theory) and translate it to an equivalent formula
in the combined theory of equality with uninterpreted functions of finite index
(EUF), which is decidable. Our method uses a grammar to construct an EUF
theory, which we use as a vocabulary. The resulting valuation formulae are in
EUF. A grammar with list selectors allows us to use the results of Furia [25] for
specifications over sequences. Such theories are enough to express specifications
such as sortedness and injectivity. We use the following grammar:

– Type theory τ expressed as a set of variables X and a map from X to scalar
and array types

– Set of literal constants L such as 0, 1, true, and false,
– Presburger and index operations alphabetΣ = {index , bound ,=,6,+,−, ∗, []},
– Formula generation rules G ⊆ X × (X ∪ L) × 2Σ , denoting allowed opera-

tions. The user provides the rules in a simple form as a set of tuples, e.g.,
{(a,i,index),(a,e,=)} denoting i is an index to a and e is data w.r.t a,

– Bound K giving the maximum allowed number of operations in a clause
Our implementation traverses this grammar and builds the vocabulary ν as the
set of all Boolean formulae with up to K operators. All SMT queries based
on valuations of ν are then in a decidable fragment of first-order logic. ν can
serve as the “first level” vocabulary, and we can proceed by using ConstructFor-
mula(ν,vtt ,vff ) to write formulae for the “second level” vocabulary, etc.

5.1 Reduction to finite theories

In the worst case, ConstructFormula makes a query for each of the 2|ν| valuations
of ν. Hence ν must be finite if ConstructFormula is to terminate. Infinite theories
arise when unbounded structures such as arrays are used in the specification.
We illustrate a reduction from an infinite theory ε to a finite one, when ε is re-
stricted to consist of a finite number of scalar formulae g1(z̄, |a|), . . . , gm(z̄, |a|),
and a finite number of indexed formula set expressions {f1(z̄, a, ī) | r1(|a|, ī)},. . .,
{fn(z̄, a, ī) | rn(|a|, ī)}, which represent infinite sets of formulae. The range pred-
icate r(|a|, ī) must be monotonic in |a|: for b′ > b, {v̄ | r(v̄, b)} ⊆ {v̄ | r(v̄, b′)}.
The key idea of the reduction is to find a finite theory that is large enough so
that every valuation of the infinite theory ε can be “represented” in the finite
theory. Consider the theory ` = r, ` < r, ` > 0, ` 6 |a| − 1, r > 0, r 6 |a| − 1,
{a[i] = e for all i such that 0 6 i < |a|}, and the valuation that assigns tt to all
of ` > 0, ` < r, and r 6 |a| − 1. This is possible only if |a| > 2. Hence we can
reduce ε to a finite theory in which |a| > 2. Appendix C, and also the full paper,
present the reduction formally.

6 Construction of General Formulae and Vocabularies

We generalize ConstructFormula to introduce existential quantifiers at the begin-
ning of a formula F that it is constructing. Universal quantifiers can be obtained
by negation. We also show how to hierarchically construct vocabularies, paying
attention to how quantified formulae in a vocabulary are handled, and how to
restrict the SMT queries to limit quantifier alternation.
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ConstructQuantifiedFormula(ν, vtt , vff )
1. Decide on the existentially quantified variables x̄
2. Extend ν with all clauses comparing variables in x̄ to all index & bound terms
3. Call the resulting vocabulary ν′

4. Invoke ConstructFormula(ν′, vtt , vff ) and let F be the result
5. Return ∃ x̄(F)

Fig. 4: Quantified formula construction ConstructQuantifiedFormula(ν, vtt , vff )

6.1 Constructing a formula with leading existential quantification
Algorithm ConstructQuantifiedFormula (Figure 4) constructs formulae of the form
∃x̄(f), where x̄ is a finite list of variables. The satisfying assignments (behav-
iors) of f , with the quantified variables x̄ projected out, (relational projection),
are the satisfying assignments of ∃ x̄(f). Hence, we construct a formula F using
ConstructFormula, and then project out the x̄ by placing ∃ x̄ before F . In ef-
fect, we “hide” the quantified variables, see e.g., Lamport [26, Sections 4.3, 8.8].
Consider using ConstructFormula to express: value e occurs in array a between
indices ` and r inclusive. We inject a quantified variable i, and apply Construct-
Formula to obtain 0 6 ` ∧ ` 6 r ∧ r < |a| ∧ ` 6 i ∧ i 6 r ∧ a[i] = e. Since i is
flagged as quantified, we project i out by prepending an ∃ i in front, to obtain
∃ i : 0 6 ` ∧ ` 6 r ∧ r < |a| ∧ ` 6 i ∧ i 6 r ∧ a[i] = e.

6.2 Hierarchical vocabulary construction

Let Fk−1 be a formula generated at vocabulary level k−1. We wish to use Fk−1

to write a formula Fk at vocabulary level k. We have two approaches:

Plug-in. Include Fk−1 as is in the vocabulary ν given to ConstructFormula(ν,
vtt , vff ) when used to construct Fk.

Boolean abstraction. Introduce a free Boolean variable b to abstract Fk−1, and
to reduce quantifier alternation. Add b to the vocabulary ν given to Construct-
Formula(ν, vtt , vff ) when used to write Fk, but modify ConstructFormula to
make the following check. Suppose the SMT solver generates an assignment that
assigns false to b but causes Fk−1 to evaluate to true. This assignment is in-
consistent with the definition of b and is therefore automatically placed in vff .
Consider Fk−1 = (∃i : 0 6 ` 6 i 6 r < |a| : a[i] = e), and let eina be the
introduced Boolean variable, so that eina = Fk−1. Consider the assignment:
eina = false, ` = 3, r = 6, a[5] = 7, e = 7, |a| = 9. eina should be true here, since
Fk−1 is. Hence the assignment is inconsistent, and is automatically discarded.

7 Implementation and Experiments

We conducted experiments to write six specifications with our method and the
supporting tool. The implementation of ConstructFormula is available online1,
along with documentation, instructions, and logs for the experiments. We used
Z3 as the SMT solver [20], and ESPRESSO [22] and ABC [21] as logic synthesis
tools to simplify the specification.

1 http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=speccheck
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Table 1: Results of user experiments with sc

Spec Valuations SMT Queries User Queries Users Time(min) MAX SMT Correct Manual
Min Max Min Max Min Max Time(ms) correct time(min)

ASRCH(3) 4,144 77 337 18 251 8 6 44.15 118 6/8 2/5 10-15
ORDR (2) 128 15 40 11 36 6 3 6.77 13.2 5/6 1/3 20
BSRCH(2) 24 10 16 6 12 4 4 10 6.4 4/4 2/5 10
LLIST(1) 238 33 45 11 22 2 5 8 34 failure 2/5 15
LLIST(4) 176 48 124 32 47 2 12 26 242 2/2 2/5 15

BHEAP(4) 80 18 54 12 41 3 16 30 253 3/3 N/A N/A
TRIE(5) 224 32 76 20 52 2 25 42 452 2/2 N/A N/A

Eight computer engineering students (4 undergraduate and 4 graduate) and
two logic designers were trained with simple examples; e.g., x < y ∧ y < z, and
then used our method to write the specifications. Six selected students from a
junior class on Algorithms wrote the specifications manually.

The “Spec” column in Table 1 lists each specification with the number of
hierarchical levels used to write it. ASRCH is array search, ORDR is array
ordered, BSRCH is binary search, LLIST is consistent node in a double linked
list, BHEAP is binary heap, and TRIE is the trie (root indexed tree) structure.
The users used previously generated specifications such as ORDR and ASRCH
to write new specifications such as BSRCH. The columns in Table 1 report the
number of valuations, number of SMT and user queries, minimum and maximum
time, number of correct specifications, and compare the results against the group
who wrote the specifications manually.

All the specifications written with the tool were more accurate than those
written manually and took reasonably better and comparable time. Even-though
users were warned not to use indirection in array indexing (next[prev[i]]) since
that leads the SMT solver to fail [24], two users (Row LLIST(1)) did and tried
to write the consistency of a node in a linked list directly without the hierarchi-
cal method. The SMT solver failed on one of the formula valuations. The two
other users (Row LLIST(4)) used additional variables and previously generated
predicates (isvalid(i), isnext(i,n)) to write the specification successfully.
The mistakes in the specifications written with the tool were underspecifications
due to the use of the partial assignment pruning technique. Reportedly formulae
with quantifiers, such as the intermediary eina and the ORDR properties were
much easier to construct with the tool than to write manually.

8 Related work and Conclusions

The methods in [2, 3] work by writing the specification and then attempting to
verify if it is accurate using animation and execution. In contrast, we write the
specification from behaviors so that it is accurate by construction. A method
of checking software cost reduction (SCR) specifications for consistency is pre-
sented in [4]. Zeller in [27] discusses writing specifications as models discovered
from existing software artifacts of relevance to the desired functionality. In none
of the above is there an analogue to our construction of preconditions and post-
conditions as formulae of first order logic.
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The work in [9] constructs an SQL query given a database with table de-
scriptions and a set of input output examples provided by the user. It uses a
restricted SQL grammar built after a user survey, generates a set of SQL queries
fitting the input output examples, and selects the one with the fewest conditions.

The works in [8,12] start from a specification relating inputs to outputs and
generate program implementations for (a) algebraic data types and arrays, and
(b) linear arithmetic and sets, respectively. The works in [7, 13] use generic
type information, parametric polymorphism, test cases, and existing pre/post-
conditions to write code snippets that compute expressions that match a type at
a point in code. The building blocks come from program elements in the scope.
The work in [13] is interactive; it uses generic type information with a resolution
based algorithm to present candidate code fragments to the user who refines
them. In [7] weights derived from a code corpus rank the candidates.

The work in [11] uses natural language processing techniques to identify en-
tities and components in the code, uses techniques similar to [7] to synthesize
smartphone automation scripts in a proprietary intermediate language, and in-
teracts with the user who provides feedback in a natural language about the enti-
ties that need to be modified and the relations between them, until the generated
script is satisfactory. Escher [10] synthesizes a recursive program interactively
from a set of program components and a set of input-output examples provided
by the user. It does so by searching the possible recursive programs that can be
generated using the provided components in two alternating manners: (1) for-
ward search, and (2) conditional inference, and measures its conversion against
a goal graph generated from the user provided inputs and outputs.

In contrast, (1) we construct specifications, i.e., quantified formulas in FOL,
that are needed by some of the above techniques, (2) our method is hierarchical,
i.e., does not require initial basic components, and (3) our user judges the cor-
rectness of concrete behaviors, and not the quality of the synthesized program.

In [14], an oracle-based method computes a loop free program that requires
a distinguishing constraint and an I/O behavior constraint. The method either
synthesizes a program or claims the provided components are insufficient. We
differ in that we build specifications in first order logic with quantifiers, we do
not require a distinguishing constraint; we compute adequacy with respect to
the type theory and correct ν when it is not adequate.

The SPECIFIER [5] tool constructs formal specifications of data types and
programs from informal descriptions, but uses schemas, analogy, and difference-
based reasoning, rather than I/O behaviors. Larch [6] improves confidence in the
specification’s accuracy by verifying claims about the specification.

Conclusions Our method constructs a formal specification in first order logic
(including quantifiers) given (1) a type theory, (2) a grammar, and (3) a sequence
of user judgments of behaviors. User experiments demonstrated the benefits of
our approach. Our method guarantees success for theories that satisfy both of
the syntactic restrictions in Section 5, i.e., grammar and reduction (ε). Future
theoretical work consists of extending this class of theory, and also applying the
ideas presented here to program verification.
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Appendices

A Proofs

Proposition 1. Let F = (
∨
Vτ : Vτ ∈ τ 7→ {tt ,ff } ∧ [Vτ ] ⊆ vtt : fm(Vτ )). Then

[F ] = vtt, and so F is a solution to the formula construction problem.

Proof. By Axiom-T, each [Vτ ] is wholly contained in either vtt or in vff . Hence
the union of all Vτ that are contained in vtt is exactly vtt : vtt = (

⋃
Vτ : [Vτ ] ⊆

vtt : [Vτ ]). Hence, the disjunction of all the formulae fm(Vτ ) corresponding to
Vτ that are contained in vtt yields a formula which is true at all elements of vtt
and false outside of vtt . That is, for F = (

∨
Vτ : [Vτ ] ⊆ vtt : fm(Vτ )), we obtain

[F ] = vtt .

Proposition 2. Let F = (
∨
Vν : Vν ∈ ν 7→ {tt ,ff } ∧ [Vν ] ⊆ vtt : fm(Vν)). Then

[F ] = vtt, and so F is a solution to the formula construction problem.

Proof. By definition of [F ], we have [F ] = (
⋃
Vν : Vν ∈ ν 7→ {tt ,ff }∧ [Vν ] ⊆ vtt :

[fm(Vν)]). Since [fm(Vν)] = [Vν ], we have [F ] = (
⋃
Vν : Vν ∈ ν 7→ {tt ,ff }∧[Vν ] ⊆

vtt : [Vν ]). By the above discussion, [F ] = vtt .

Theorem 1 (Correctness of ConstructFormula). Assume that (1) voc is ad-
equate for {vtt , vff } and (2) that no invocation of the SMT solver by Construct-
Formula fails, and (3) the developer responds accurately to all queries. Then
ConstructFormula (ν,vtt,vff ) returns formula F such that [F ] = vtt.

Proof. We first establish the validity of the invariant F ≡ (
∨
Vν : Vν 6∈ ϕ ∧

[Vν ] ⊆ vtt : fm(Vν)) and postcondition F ≡ (
∨
Vν : [Vν ] ⊆ vtt : fm(Vν)) for

ConstructFormula; see Figure 3. The set ϕ consists of those valuations over ν
that remain to be queried to the developer. Initially, ϕ = ν 7→ {tt ,ff }, i.e., it
consists of all the valuations over ν, and so the range Vν 6∈ ϕ ∧ [Vν ] ⊆ vtt is
empty. Hence both sides of the Invariant are false, and so the Invariant holds
initially.

Consider an arbitrary iteration of the while loop in which valuation V ′ν is
selected (we use V ′ν rather than Vν as in the code to avoid a name clash with the
bound Vν). By assumption (2), the SMT solver succeeds and returns a result.

Case 1: fm(V ′ν) is unsatisfiable. Then V ′ν , and possibly other unsatisfiable valu-
ations, are removed from ϕ, in lines 18–19. Since fm(V ′ν) ≡ ff , the Invariant is
unaffected by the removal of unsatisfiable valuations from ϕ.

Case 2: fm(V ′ν) is satisfiable. Let σv be the satisfying assignment for fm(V ′ν)
returned by the SMT solver in line 10. In line 11, the developer is queried as to
whether σv ∈ vtt or not. By assumption (3), the developer responds accurately
to this query. We have two subcases.

Subcase 2.1: σv ∈ vtt . Hence the developer responds σv ∈ vtt , which causes line
13 to be executed; fm(V ′ν) is added as a disjunct in F . Since σv.fm(Vν) = tt and
σv ∈ vtt , we have [V ′ν ] ∩ vtt 6= ∅. By assumption (1) and (Ad), we have Σ/ν 6
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{vtt , vff }. Hence [V ′ν ] ⊆ vtt . So, V ′ν is added to the range Vν 6∈ ϕ ∧ [Vν ] ⊆ vtt
in F ≡ (

∨
Vν : Vν 6∈ ϕ ∧ [Vν ] ⊆ vtt : fm(Vν)) while fm(V ′ν) is added to F as a

disjunct. This preserves the equivalence, and so the invariant continues to hold.

Subcase 2.2: σv ∈ vff . Hence the developer responds σv ∈ vff , which causes line
15 to be executed; F remains unchanged. Since σv.fm(Vν) = tt and σv ∈ vff ,
we have [V ′ν ] ∩ vff 6= ∅. By assumption (1) and (Ad), we have Σ/ν 6 {vtt , vff }.
Hence [V ′ν ] ⊆ vff . So, V ′ν is not added to the range Vν 6∈ ϕ ∧ [Vν ] ⊆ vtt in
F ≡ (

∨
Vν : Vν 6∈ ϕ∧[Vν ] ⊆ vtt : fm(Vν)). Since F remains unchanged, both sides

are unchanged, which preserves the equivalence. Hence the invariant continues
to hold.

Thus we have shown, in all cases, that F ≡ (
∨
Vν : Vν 6∈ ϕ ∧ [Vν ] ⊆ vtt :

fm(Vν)) is preserved by a single execution of the while loop. We also showed
that it holds initially. Hence it is actually an invariant.

Upon termination, we have ϕ = ∅. Substituting into the invariant, we obtain
that F ≡ (

∨
Vν : [Vν ] ⊆ vtt : fm(Vν)) holds upon termination. This is the

required postcondition.
Let σ be an arbitrary element of vtt . Hence σ ∈ [Vν ] for some Vν such that

[Vν ] ⊆ vtt , since Σ/ν 6 {vtt , vff }. Since σ.fm(Vν) = tt by our choice of σ and
Vν , we have σ.F = tt .

Now let σ be an arbitrary element of vff . Hence σ ∈ [Vν ] for some Vν such
that [Vν ] ⊆ vff , since Σ/ν 6 {vtt , vff }. Also since Σ/ν 6 {vtt , vff }, there is no
V ′ν such that σ ∈ V ′ν ∧ V ′ν ⊆ vtt . Hence σ.F = ff .

We conclude from the above that [F ] = vtt , i.e., F is accurate with respect
to {vtt , vff }.

B Not-in-order example

The following is a successful run of the tool that implements our method. The
run specifies that an array is out of order. The result will be negated later to
specify that the array is in order. The user passed the notinorder theory below
to the tool.

1 theory inorder {
2 int [] a;
3 constants {0,1}
4 grammar { (a,a,<=);}
5 //The following are default values.
6 //We list them here for illustration
7 num_operations_per_clause_bound = 3;
8 num_quantifiers_bound = 1;
9 }

The tool injects a quantified variable i as an index into a, and uses the
production rules of the grammar to construct the following vocabulary.

1 theory inorder{
2 node ’a’ of type array v--- value 0 sizes (0,0,0) id 0 and 0 operands.
3 node ’a.size_minus_1’ of type int v--- value 0 sizes (0,0,0) id 1 and 0 operands.
4 node ’lit(0)’ of type literal -c-- value 0 sizes (0,0,0) id 2 and 0 operands.
5 node ’lit(1)’ of type literal -c-- value 1 sizes (0,0,0) id 3 and 0 operands.
6 node ’lit(-1)’ of type literal -c-- value -1 sizes (0,0,0) id 4 and 0 operands.
7 node ’i’ of type int v-u- value 0 sizes (0,0,0) id 5 and 0 operands.
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8 node ’[]’ of type access --ud value 0 sizes (0,0,0) id 6 and 2 operands.
9 node ’+’ of type binary-arithmetic --u- value 0 sizes (0,0,0) id 7 and 2 operands.

10 node ’[]’ of type access --ud value 0 sizes (0,0,0) id 8 and 2 operands.
11 node ’<=’ of type binary-relational --u- value 0 sizes (0,0,0) id 9 and 2 operands.
12 node ’<=’ of type binary-relational --u- value 0 sizes (0,0,0) id 10 and 2 operands.
13 node ’=’ of type binary-relational --u- value 0 sizes (0,0,0) id 11 and 2 operands.
14 node ’<=’ of type binary-relational --u- value 0 sizes (0,0,0) id 12 and 2 operands.
15 node ’=’ of type binary-relational --u- value 0 sizes (0,0,0) id 13 and 2 operands.
16 node ’<=’ of type binary-relational --u- value 0 sizes (0,0,0) id 14 and 2 operands.
17 node ’<=’ of type binary-relational --u- value 0 sizes (0,0,0) id 15 and 2 operands.
18 rule (a,a,<=)
19 rule (a,i,[])
20 rule (lit(0),i,<=)
21 rule (i,a.size_minus_1,<=,=)
22 rule (i,lit(0),=)
23 rule (i,lit(1),+)
24 vocab {
25 }
26 genvocab {
27 9: (0 <= i)
28 10: (0 <= (1 + i))
29 11: (0 = i)
30 12: (i <= a.size_minus_1)
31 13: (a.size_minus_1 = i)
32 14: (a[i] <= a[(1 + i)])
33 15: (a[(1 + i)] <= a[i])
34 }
35 qfvocab {
36 }
37 }

The tool declares the variables and the formulae and their negations with
the SMT Solver.

SPCHK: building SMT formulae from vocab...
(benchmark SMT: extrafuns( (a (Array Int Int)) (a.size_minus_1 Int) (i Int))

:formula (<= 0 i) :formula ( not ( (<= 0 i)) )
:formula (<= 0 (+ 1 i)) :formula ( not ( (<= 0 (+ 1 i))) )
:formula (= 0 i) :formula ( not ( (= 0 i)) )
:formula (<= i a.size_minus_1) :formula ( not ( (<= i a.size_minus_1)) )
:formula (= a.size_minus_1 i) :formula ( not ( (= a.size_minus_1 i)) )
:formula (<= (select a i) (select a (+ 1 i))) :formula ( not ( (<= (select a i) (select a (+ 1 i)))) )
:formula (<= (select a (+ 1 i)) (select a i)) :formula ( not ( (<= (select a (+ 1 i)) (select a i))) ) )

SPCHK: parsing SMT formulae...
SPCHK: made 4 declarations as follows.
SPCHK: 0; NAME:i; DCL:(define i Int); AST:e15808
SPCHK: 1; NAME:a; DCL:(define a (Array Int Int)); AST:e15868
SPCHK: 3; NAME:a.size_minus_1; DCL:(define a.size_minus_1 Int); AST:e15848

The the tool enumerates all evaluations, queries the SMT solver for a satis-
fying assignment for each evalaution, and presents that to the user. Notice that
for the asignment presented below the size of the array is 1 (a.size minus 1=0)
and thus the array is ordered. So the user answers “incorrect” and blames the
size of the array for it by selecting valuation formulae 2 and 4 as the reason for
the judgement.

SPCHK: enumerating vocab evaluations using recursive traversal...
SPCHK: checking choice...[1 1 1 1 1 1 1 ]
SPCHK: Calling SMT Solver. This may take time..
SPCHK: choice is satisfiable.

Is the satisfying assignment below a good model for your property?
Notice that a specification accepts a don’t care assignment. (this notice will be issued only twice).

a[1:int] = 7719:int, a[0:int] = 7719:int, a[otherwise]= 7719:int
a.size_minus_1 = 0:int
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i = 0:int
SPCHK: Answer by ’Y’ to accept and ’N’ to reject the assignment. ’M’ to view more details from the solver about the model.
USER > N
SPCHK: If the rejection is due to part of the assignment,

press ’V’ to select the bad variables,
press ’B’ to select the bad vocabulary values, or
press ’C’ to continue.

USER > b
+ 0+ (<= 0 i) is true
+ 1+ (<= 0 (+ 1 i)) is true
+ 2+ (= 0 i) is true
+ 3+ (<= i a.size_minus_1) is true
+ 4+ (= a.size_minus_1 i) is true
+ 5+ (<= (select a i) (select a (+ 1 i))) is true
+ 6+ (<= (select a (+ 1 i)) (select a i)) is true

SPCHK: Type the ids of the vocab formulae that are the reason for rejecting the satisfying example.Type ’-1’ to finish, ’-2’ to restart, and ’-3’ to exit bad vocab formulae option.
USER > 2 4
SPCHK: The reason for rejecting the model is the partial assignment
+ 2+ (= 0 i) is true
+ 4+ (= a.size_minus_1 i) is true
SPCHK: please confirm by typing ’Y’. Restart by typing ’R’. Ignore and continue by typing any other key.
USER > y

The formula valuations that are extensions of formula 2 and 4 being true will
be automatically ignored as follows.

SPCHK: ignore bad partial assignment: [- - 1 - 1 - - ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 1 1 1 1 1 0 ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 1 1 1 1 0 - ]

When the user is presented by an array that is not in ascending order, the
user judges that as correct. Notice that in the array below a[0] = 1797 is bigger
than a[1] = 1796]. The valuation formula is also joined to the specification.

SPCHK: checking choice...[1 1 1 1 0 0 1 ]
SPCHK: Calling SMT Solver. This may take time..
SPCHK: choice is satisfiable.

Is the satisfying assignment below a good model for your property?
a[1:int] = 1796:int, a[0:int] = 1797:int, a[otherwise]= 1796:int
a.size_minus_1 = 1:int
i = 0:int

SPCHK: Answer by ’Y’ to accept and ’N’ to reject the assignment. ’M’ to view more details from the solver about the model.
USER > y
SPCHK: Adding vocab choice to the specification.

When an unsatisfiable formula is met, the tool computes the unsat cores and
adds them to the eliminated patterns.

SPCHK: checking choice...[1 1 1 1 0 0 0 ]
SPCHK: Calling SMT Solver. This may take time..
SPCHK: choice is not satisfiable.
SPCHK: Adding unsat core to eliminated patterns...[- - - - - 0 0 ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 1 1 0 1 - - ]

The user judges that an empty array is also an ordered array (a.size minus 1 = -1).

SPCHK: checking choice...[1 1 1 0 0 1 0 ]
SPCHK: Calling SMT Solver. This may take time..
SPCHK: choice is satisfiable.

Is the satisfying assignment below a good model for your property?
a[1:int] = 449:int, a[0:int] = 448:int, a[otherwise]= 449:int
a.size_minus_1 = -1:int

SPCHK: Answer by ’Y’ to accept and ’N’ to reject the assignment. ’M’ to view more details from the solver about the model.
USER > n
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The tool now automatically ignores formula valuations because of both un-
satisfiable cores and user selected partial assignments.

SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 1 0 0 0 0 - ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 0 1 1 1 - - ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 0 1 1 0 1 - ]
SPCHK: checking choice...[1 0 1 1 0 0 1 ]
SPCHK: Calling SMT Solver. This may take time..
SPCHK: choice is not satisfiable.
SPCHK: Adding unsat core to eliminated patterns...[1 0 - - - - - ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 0 1 1 0 0 0 ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 0 1 0 - - - ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[1 0 0 - - - - ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[0 1 1 1 1 - - ]
SPCHK: checking choice...[0 1 1 1 0 1 1 ]
SPCHK: Calling SMT Solver. This may take time..
SPCHK: choice is not satisfiable.
SPCHK: Adding unsat core to eliminated patterns...[0 - 1 - - - - ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[0 1 1 1 0 1 0 ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[0 1 1 1 0 0 - ]
SPCHK: Ignore: subtree satisfies an eliminated pattern.[0 1 1 0 - - - ]

When the enumeration is done, the tool shows the SMT formula before
Boolean simplification (22 lines in this case).

Then the tool simplifies the formula with ESPRESSO and ABC.

SPCHK: Calling logic minimization (Espresso) to simplify formula.
...
SPCHK: using abc for simplification.
SPCHK: abc command is read_blif yes.16943.abc.blif
...
SPCHK: simplified abc formula is:
Spec = exists i. (0 <= i) and (0 <= (1 + i)) and (i <= a.size_minus_1) and !(a[i] <= a[(1 + i)]) and (!(a.size_minus_1 = i));

Then the tool prints statistics.

SPCHK: Timing and statistics report:
number of vocab clauses: 7
number of variables: 3

number of queries to user: 16
number of partial assignments: 5
number of unsat cores: 8
number of calls to sat solver (Z3): 20

total traverse time (seconds): 221.476
total sat time (micorseconds): 6605
total match unsat core time (micorseconds): 54

C Reduction to finite theories

We present a reduction from the case of infinite theories to the finite case. Our
reduction applies to both type theory and vocabulary, so we assume a generic
theory ε.

An element of Σ defines values for some scalar variables z̄ (e.g., booleans
and integers) and some arrays ā. For ease of exposition, we assume that there is
exactly one array a. It is straightforward to remove this restriction. Let ī be a
set of “dummy” variables, which we use to index a. Our reduction requires some
syntactic restrictions, which we give as a definition of reducible theory:
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Definition 7 (Reducible Theory Syntax). A reducible theory ε consists of
a finite number of scalar formulae g1(z̄, |a|), . . . , gm(z̄, |a|), and a finite number of
indexed formula set expressions {f1(z̄, a, ī) | r1(|a|, ī)} , . . . ,{fn(z̄, a, ī) | rn(|a|, ī)}.

The range predicate r(|a|, ī) must be monotonic in |a|: for b′ > b, {v̄ | r(v̄, b)} ⊆
{v̄ | r(v̄, b′)}. The ī are dummy variables.

As indicated, a scalar formula can refer to the scalar variables z̄ and to the size
|a| of array a. An indexed formula f(z̄, a, ī) can refer to the z̄, and to elements
of a by using any of ī as an index. The range predicate r(|a|, ī) can refer to ī
and |a|.

Definition 8 (Bounded Theory εb). For b > 0 and reducible theory ε, the
corresponding theory with bound b, εb, is the set of wffs {g1(z̄, b), . . . , gm(z̄, b)} ∪
{f1(z̄, a, ī) | r1(b, ī)} ∪ · · · ∪ {fn(z̄, a, ī) | rn(b, ī)}. Each formula set expression
{f(z̄, a, ī) | r(b, ī)} denotes the set of formulae consisting of f(z̄, a, v̄) for each v̄
such that r(b, v̄) holds.

As an example, a reducible theory ε for the array search speciifcation (search
of an array a between indices ` and r inclusive) is:

– ` = r
– ` < r
– ` > 0
– ` 6 |a| − 1
– r > 0
– r 6 |a| − 1
– {a[i] = e for all i such that 0 6 i < |a|}

The corresponding theory with bound b = 5 (i.e., set |a| = 5), is:
– ` = r
– ` < r
– ` > 0
– ` 6 4
– r > 0
– r 6 4
– a[0] = e, a[1] = e, a[2] = e, a[3] = e, a[4] = e

We wish to find a “threshold” value β for b such that we can execute our algo-
rithms ConstructFormula, ConstructQuantifiedFormula, and MakeAdequate using
εβ instead of ε, i.e., we execute ConstructFormula(εβ , vtt , vff ), ConstructQuanti-
fiedFormula(εβ , vtt , vff ), and MakeAdequate(ν, εβ , vtt , vff ). Since ε is the union
of εb for all b > 0, we must show how every εb can be “represented” in εβ . We
require that every satisfiable valuation Vεb in εb have a representative valuation
in εβ . We will then process this representative, rather than Vεb . If we can do
this for all valuations Vεb for all b > β, then we can replace reasoning about the
infinite theory ε with reasoning about the finite theory εβ .

Given β, b such that β < b, we define the mapping Mβb : εβ 7→ εb as follows,
with reference to Definition 7 for the syntax. For j = 1, . . . ,m, gj(z̄, β) maps
to gj(z̄, b). For k = 1, . . . , n, fk(z̄, a, v̄) maps to fk(z̄, a, v̄) for each v̄ such that
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rk(β, v̄) holds. Note that rk(b, v̄) also holds, by monotonicity of range predicates.
That is, scalar formulae are mapped with β replaced by b. Indexed formulae are
mapped as is, since they are also present in εb, due to β < b and monotonicity
of range predicates. Mβb is injective from εβ to εb, but not onto, since some
indexed formulae in εb (roughly, those corresponding to the part of the range
due to b− β) do not have an inverse image under Mβb.

Continuing the above example, for εb, the scalar formulae are ` = r, ` < r,
` > 0, ` 6 b − 1, r > 0, r 6 b − 1, and the indexed formulae are a[0] =
e, a[1] = e, . . . , a[b − 1] = e. Now for εβ with β < b, the scalar formulae are
` = r, ` < r, ` > 0, ` 6 β − 1, r > 0, r 6 β − 1, and the indexed formulae
are a[0] = e, a[1] = e, . . . , a[β − 1] = e. Note that the indexed formulae of εβ
are a subset of those of εb, while the scalar formulae are not: they result by
substituting β for b.

We stated above that every satisfiable valuation Vεb in εb will have a repre-
sentative valuation in εβ , which we will process in place of Vεb . We denote this
representative of Vεb by Vεb � εβ , and we define it as a projection onto εβ , as
follows.

Definition 9 (Representative valuation). Let Vεb : εb 7→ {tt ,ff } be a valu-
ation of εb. Define Vεb �εβ : εβ 7→ {tt ,ff }, a valuation of εβ, as follows:

for every f ∈ εβ: Vεb �εβ(f) = Vεb(Mβb(f)).

That is, we evaluate a formula f of εβ in Vεb � εβ by mapping it to Vεb using
Mβb, and then applying Vεb .

We use Vεb � εβ as the representative of Vεb . For our algorithms to work
correctly under this mapping, we require, for some β and all b > β:

1. If Vεb is satisfiable, then so is Vεb �εβ . That is, if [Vεb ] 6= ∅, then [Vεb �εβ ] 6= ∅.
2. For all σb ∈ [Vεb ], σβ ∈ [Vεb � εβ ], the user classifies σb and σβ in the same

way, i.e., both in vtt or both in vff .
Clause 1 can be checked mechanically by submitting it to a SMT solver. Our

first attempt to write Clause 1 as a first order wff is:

∃β > 0, ∀ b > β : =|fm(Vεb) ⇒ =|fm(Vεb �εβ),

where =| means “is satisfiable”, and we render each occurrence of =| using exis-
tential quantification.

However, the formulae in εb depend on b, which presents a problem: (=|fm(Vεb))
is a wff which depends on b, so that different b give different formulae. Thus,
we have to check an infinite set of wff’s, one for each b. We deal with this by
verifying a single formula which implies each of these wff’s.

Define fm(Vεb) , fm(V sεb) ∧ fm(V iεb), where fm(V sεb) is the assignment to the
scalar formulae in εb, and fm(V iεb) is the assignment to the indexed formulae in
εb. Likewise define fm(Vεβ ) , fm(V sεβ )∧ fm(V iεβ ), where Vεβ , Vεb �εβ . We wish
to check

=|(fm(V sεb) ∧ fm(V iεb)) ⇒ =|(fm(V sεβ ) ∧ fm(V iεβ )).
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By monotonicity of range predicates, we have εiβ ⊆ εib, where εiβ , ε
i
b are the sub-

sets of εβ , εb respectively, consisting of the indexed formulae. Hence fm(V iεb)⇒
fm(V iεβ ) is logically valid. So

=|(fm(V sεb) ∧ fm(V iεb)) ⇒ =|(fm(V sεb) ∧ fm(V iεβ ))

is also logically valid. Hence it suffices to check

=|(fm(V sεb) ∧ fm(V iεβ )) ⇒ =|(fm(V sεβ ) ∧ fm(V iεβ )).

We now replace =| by existential quantifiers:

(∃ z̄, a : fm(V sεb) ∧ fm(V iεβ )) ⇒ (∃ z̄, a : fm(V sεβ ) ∧ fm(V iεβ )).

Now the set of scalar formulae {g1(z̄, b), . . . , gm(z̄, b)} in εb varies with b only
inasmuch as the value of b changes. Otherwise the formulae are fixed, and so we
have a closed form for all b. Hence we can restore the ∀ b > 0 quantifier:

∀ b > 0 : ((∃ z̄, a : fm(V sεb) ∧ fm(V iεβ ))⇒ (∃ z̄, a : fm(V sεβ ) ∧ fm(V iεβ ))). Th(β)

The above is a first order logic formula, for each β. However, different values of
β give different formulae, since the set of indexed formulae {f1(z̄, a, ī) | r1(β, ī)}
∪ · · · ∪ {fn(z̄, a, ī) | rn(β, ī)}, varies with β, since β is referenced in the range
predicates r1(β, ī), . . . , rn(β, ī). Hence we do not have a closed form for all β. So,
we cannot add a ∃β quantifier at the beginning, since the form of the formula
changes with β. So, we check validity of Th(β) for values of β starting from 1 and
incrementing. Hence, we find the smallest value of β which works, as desired.

Clause 2 must be assumed as an axiom, since it is a restriction on user
behavior:

User-Consistency: Let b > β, and let Vεβ = Vεb � εβ . Then, for every
σb ∈ [Vεb ] and every σβ ∈ [Vεβ ], the user assigns the same classification
(vtt or vff ) to σb and σβ .

From Clauses 1 and 2, we obtain:

for all b > β, if some σb ∈ [Vεb ] exists, then some σβ ∈ [Vεβ ] exists, and
the user gives the same answers to the queries “is σb in vtt or in vff ?”
and “is σβ in vtt or in vff ?”

Hence we can present “is σβ in vtt or in vff ?” to the developer rather than “is
σb in vtt or in vff ?”

Example: array search. Let Vεb be an assignment to ` = r, ` < r, ` > 0, ` 6 b−1,
r > 0, r 6 b− 1, a[0] = e, a[1] = e, . . . , a[b− 1] = e.

Let Vεβ be an assignment to ` = r, ` < r, ` > 0, ` 6 β − 1, r > 0, r 6 β − 1,
a[0] = e, a[1] = e, . . . , a[β − 1] = e.

Th(β) states that if Vεb is satisfiable, then so is Vεβ . Suppose that Vεb assigns
true to ` < r, ` > 0, r 6 b − 1, and truth values to other formulae so that Vεb
is satisfiable. Then Vεβ assigns true to ` < r, ` > 0, r 6 β − 1, and must also
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be satisfiable. This requires β > 2. Suppose we include ` < r − 1 in ε, e.g., to
require at least one array element between the left and right boundaries, then
we would have β > 3. We validated this (with ` < r− 1 included) by composing
Th(β) manually and submitting to Z3, with values 1,2,3 for β. Th(β) was not
valid for 1,2, and was valid for 3, as expected.


