
 

Diacritic-Aware Arabic Word Matching 

Mustafa Jarrara, Fadi A. Zaraketb, Rami Asiaa 

aBirzeit University, West Bank, Palestine 
bAmerican University of Beirut, Lebanon 

 

Abstract Words in Arabic consist of letters and short vowel symbols called diacritics that are typically inscribed 

atop regular letters. Changing some diacritics may change both the syntax and semantics of a word; turning a 

word into another. These results in difficulties when matching two or more words solely based on basic string 

matching techniques. Typically, Arabic NLP applications resort to morphological analysis to battle ambiguity 

originating from this and other challenges. In this paper, we introduce the implication relationship algorithm (IRA) 

which takes two words with the same non-diacritic letters and decides whether they are the same or not. It 

compares the words and computes a distance metric between diacritics. Second, we introduce the morphology 

subsume algorithm (MSA) which computes a metric that measures how much one word is a morphological 

replacement of another word with the same non-diacritic letters. Both algorithms are sound. When each makes a 

full decision, its decision is always correct. However, MSA is incomplete as it cannot make a decision in a number 

of cases; which could be the case for expert human readers as they might require context to decide as well. 

Nevertheless, our experiments show that after several refinement iterations for IRA rules, IRA provides an answer 

for 100% of the word pairs given, and MSA provides an answer for about 95% of the words given. Both IRA and 

MSA distance metrics agree on 93% of the intersection. The high agreement value is evidence that Arabic NLP 

applications that do not directly need the morphological features may use the computationally-lighter IRA 

algorithm for disambiguation. We demonstrate this result with a lemma disambiguation case study.  

Keywords: Arabic; NLP; Natural language processing; implication; diacritics; disambiguation. 

1 Introduction 

Diacritics are distinguishing features of the 
Arabic language. Diacritics in Arabic have two 
main roles: (i) they provide a phonetic guide i.e. 
help readers recite/articulate the text correctly, 
and (ii) they disambiguate the intended meaning 
of otherwise ambiguous words. Table 1 shows a 
list of the most used diacritics of the modern 
standard Arabic (MSA) language. The fatha and 
kasra diacritics show as accents above and below 
the corresponding letter and indicate short ‘a’ and 
‘i’ vowels, respectively. The dhamma diacritic 
shows as an accent with a small circle and denotes 
a short ‘o’ vowel. A sukoon shows a small circle 
atop and denotes a silent letter. A shadda is a 
gemination marker seen above a letter. It denotes 
stressing the letter such that the letter is 
pronounced twice: first as a silent letter and 
second with a non-sokoun diacritic. A tanween 
diacritic is an indefiniteness mark and shows as a 
double fatha, kasra, or dhamma diacritic. It 
denotes the letter spelled with the marked 
diacritic followed by a silent ‘n’ sound.  

Table 1 Basic diacritic table in Buckwalter  

Diacritic Shape Example 

fatha (short a) َرَسَمََ ــ (rasama) drew 

damma (short o) ُسنُبلةَ ــ (sonobulap) spike (of grain) 

kasra (short y) ِسِهام ــ (sihAm) arrows 

sokoun (silent vowel) ْسِعْرَ ــ (siEor) price 

shadda (stress mark) ّهدَّد ــ (had~ad) threatened 

tanween-fatha ًأبداًَ ــ (abadAF) never 

tanween-dhamma ٌقلمٌَ ــ (kalamON) pen 

Tanween-kasra ٍشعبٍَ ــ($aEobIN) people 

It is common practice for Arabs to write 
Arabic text without diacritics, which makes 
Arabic text highly ambiguous [1]. Ambiguity 
refers to the fact that the morphological, syntactic 
or semantic analysis of one word may lead to 
several possible various word matches. That is, 
two words with the same non-diacritic characters 
but with different and possibly omitted diacritic 
characters are not necessarily the same. While 
morphological analysis is key in current 
automated analysis techniques for Arabic text, it 
is known that morphological ambiguity is a 
`notorious' problem for the Arabic language [2]. 

The results of [5], cited in [4], state that non-
diacriticized words exhibit 8.7 syntactical 
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ambiguity on the average which drops to 5.6 for 
diacriticized words. For instance, the word جزر 
(jzr) has different interpretations based on 
diacritization; e.g. جَزَر (jazar) means carrots, 

زُرجَُ  (jozor) means islands, and جَزْر (jazr) means 
the fallback of the tide. The word ََجَزَر (jazara) is 
a past tense verb meaning “butchered". 
The use of diacritics for disambiguation is not 
restricted to human readers. It applies also to 
automated tools such as morphological analysers. 
Some morphological analysers such as [6][1] use 
partial diacritics to resolve ambiguity, e.g. they 
filter solutions that are inconsistent with diacritics 
available in the input text. 
Essential to the process of disambiguation is the 
comparison of two Arabic words with the same 
sequence of non-diacritic letters, but with different 
diacritics. A simple string comparison of two Arabic 
words such as word جزر (jzr) and جَزَر (jazar) returns 
a negative result due to the two additional diacritics, 
while readers identify them as the same word in a 
sentence. Typical tools that provide Arabic editing 
and searching services tend to ignore diacritics in 
search and matching. In analogy, imagine ignoring 
vowels in English. This means that tools need to 
consider the words جَزَر (jazar) carrots and جُزُر 
(jozor) islands as the same word.  
In this paper, we present two algorithms that 
compare words with similar non-diacritic letters 
with possibly different diacritic letters, and study 
their accuracy. The implication relationship 
algorithm (IRA) checks whether one word w1 
implies another word w2 with the same no-
diacritic letters. It compares the difference and 
distance between diacritics to assist in testing 
whether w1 and w2 are the same word or not. The 
morphology subsume algorithm (MSA) checks 
whether word w1 is morphologically superior to 
another word w2 with similar non-diacritic letters. 
It computes a score metric that measures how 
much w1 is a morphological replacement of w2.  
We evaluated both algorithms against a collection 
of word pairs collected from several Arabic 
dictionaries, resulting in 16,408 distinct words. 
Each word was paired with potentially similar 

 

 

*  (https://github.com/SinaInstitute/ImpliCheck) or (http:// 

ontology.birzeit.edu/tools/verbmesh/DiacriticAwareMatching/inde
x.html) 

words from the SAMA 3.1 database that the 
ALMOR analyser proposed to be potentially the 
same word. In the end, our evaluation was against 
a set of 35,203 distinct word pairs. Both 
algorithms are sound and exhibit high agreement. 
When either IRA or MSA makes a full decision, 
that decision is always correct. The MSA 
algorithms is not complete as it cannot make a 
decision in a small number of cases. Note that this 
also could be the case for expert human readers 
as they might require context to decide. 
Nevertheless, IRA reported determined answers 
for 100% of the pairs used in the experiment. The 
IRA algorithm was fine-tuned based on the 
feedback of an expert linguist who inspected the 
results manually. The MSA provides an answer 
for about 95% of the words given. The remaining 
5% were missing in the lexicons of the 
morphological analyser we used. Both the IRA 
and the MSA distance metrics agreed on 93% of 
the intersection. The source code of both 
algorithms, as well as the datasets we used in the 
experiments, are accessible online*. 
The high level of agreement is evidence that 
Arabic NLP applications that typically use 
morphological analysis as a necessary pre-
processing step to battle ambiguity may use the 
much lighter IRA algorithm instead, in case the 
application did not directly need the 
morphological features. We demonstrate this 
claim with a lemma disambiguation case study.  
The rest of this paper proceeds as follows. In 
Section 2 we provide necessary definitions and 
background. In Section 3, we present and discuss 
the IRA algorithm. In Section 4, we present and 
discuss the MSA algorithm. In Section 5, we 
present related work and compare it to IRA and 
MSA. We present the experimental setup and 
detail our results in Section 6 and we discuss the 
utility of our work for practical case studies in 
Section 7. We conclude and discuss future work 
in Section 8. 

https://github.com/SinaInstitute/ImpliCheck)
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2 Related Work  

We first review related work that stress the 
importance of considering diacritics for 
automated comprehension of Arabic text and for 
ambiguity reduction [4][5][10][1][17]. Then we 
review works that attempt to restore diacritics to 
Arabic text [13][14][15][16][18][20][21]. Then 
we review morphological resources that include 
diacritic information [3][6][1][8][9].  

Diacritics and disambiguation. Much literature 
attested to the high ambiguity of un-vocalized 
text and the power of diacritics in ambiguity 
reduction. Programs that automatically add 
diacritics to Arabic text exist in the software 
industry (Sakhr, RDI). However, the commercial 
products are closed source. They use 
morphological analysis and syntax analysis to 
predict the diacritics. The work in [10] 
automatically adds diacritics for transcriptions of 
spoken Arabic text and employs existing acoustic 
information to predict the diacritics. The work in 
[1] introduces an ambiguity controlled 
morphological analyser that employs a rule based 
system and finite state machines. The work 
ignores diacritics when they exist in Arabic text 
because it claims that it only found insignificant 
meaningful diacritics when considering a large 
corpus. It then illustrates how diacritics may be 
used later on to filter vocalized solutions if 
needed by the application using the 
morphological analyser.  
Both [10][1] quote from [5] that a dictionary 
word with no diacritics has on average 2.9 
different possible vocalizations and that a sample 
text of 23 thousand words exhibited 11.6 different 
diacritic assignments per word on average. The 
same source reports that 74% of Arabic words 
have more than one possible vocalization. It also 
reports an average of 8.7 syntactical ambiguity 
for unvocalized words, which drops to 5.6 for 
vocalized words. This is evidence of the role of 
diacritics in disambiguation of word forms.  
The work in [4] presents problems in DECORA-
1 related to correction and error agreement 
detection in Arabic text. They introduce an 
enhancement, DECORA-2, that considers 
diacritics to help resolve the problems. The work 
in [4] claims that most Arabic text omits 
diacritics, few Arabic teaching books have partial 
diacritics, and only the Quran and teaching books 

for early stages are fully vocalized. Studies in [4] 
show that an Arabic word usually has six varying 
vocalizations.  
The work in [17] takes an Arabic word, checks it 
against preset vocalization templates and returns 
the POS tags of the word. The approach works for 
a set of verbs and nouns and is reported to 
decrease ambiguity when diacritics that vocalize 
the last character of the pattern exist. This is 
evidence of both the utility of diacritics in 
disambiguation of POS tags and the importance 
of where to place the diacritic within the word.  
Nevertheless, the study in [12] concludes that the 
presence of diacritics affects reading speed 
negatively while increasing text comprehension 
only when diacritics play a role in 
disambiguation. It advises that writers must 
provide diacritics economically when needed for 
disambiguation of the intended meaning. 
Diacritic restoration. The vast majority of work 
on Arabic diacritics is concerned with restoring 
diacritics to Arabic text [13][14][15][16][18] [20] 
[21].  
Among other morphological disambiguation 
tasks, the work in [18] explores two diacritics 
related tasks: DiacFull and DiacPart. DiacFull 
restores diacritics to all letters of the word and 
DiacPart restores them to all letters except the 
final letter. The work uses a linear optimization 
technique to select the best diacritization of the 
given word. They confirm two important 
hypotheses: 1) the use of lexeme features help in 
determining the best diacritics, 2) tuning the 
parameters of the optimization algorithm to the 
task at hand helps the disambiguation task. In our 
work, we manually fine-tuned weights that 
characterize an arbitrary distance between 
diacritics to reduce comparison errors and we 
arrived at a similar result to hypothesis (1).  
The work in [20] is a follow-on to [18]. It adds 
diacritics to words in context of morphological 
disambiguation and tokenization. 
The work in [21] describes a commercial product 
by RDI to automate diacritization of Arabic text. 
It uses a stochastic process to decide the most 
likely diacritic map. Since the map is not 
necessarily grammatically correct and may be out 
of the vocabulary, a second stochastic process 
uses more features of the word including 
morphological features to select the most likely 
compatible solution out of a set of diacritic based 
feature factorizations. This work is evidence of 
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how much partial diacritics can reduce 
sophisticated work needed later to disambiguate 
the Arabic text. With our MSA and IRA 
algorithms one can infer the diacritic that most 
reduces ambiguity and use it. 
The work in [13] presents a system for Arabic 
language diacritization using Hidden Markov 
Models (HMMs). It represents each diacritic with 
an HMM and uses the context of the whole text 
to concatenate the HMM decisions and produce 
the final diacritic sequence. 
The work in [14] presents a hybrid system for 
Arabic diacritization based on rule based and data 
driven techniques. It uses morphological features 
and out of vocabulary elimination techniques to 
reduce the solutions. They do better than [18] 
[20][21] by an absolute margin of 1.1% and still 
make an 11.4 full diacritization word error rate. 
This is evidence of how complex and 
sophisticated the diacritization process is.  
The work in [15] presents a system to diacritize 
Arabic text automatically using a statistical 
language model and morph-syntactical language 
models. The work in [16] presents an evaluation 
of three commercial Arabic diacritization 
systems using fully diacritized text from the 
Quran and short poems from the period of the 
advent of Islam.  
Existing morphological resources with 
diacritics. In addition to automatic diacritization 
tools, previous work includes tools that 
disambiguate based on input diacritics. Analysers 
such as Buckwalter [3] and SAMA [9], contain 
the diacritization of lexicon entries in addition to 
other annotations. However, they ignore the 
partial diacritics in the analysis phase and the 
analysis makes little benefit from lexicon 
vocalizations. MORPHO3 [1], Arabic Xerox [8] 
and MORPH2 [6] are other examples of 
morphological analysers with the same 
capability. They later filter morphological 
solutions based on their consistency with 
available diacritics. 
In summary our related work, we find that the 
vast amount of work discussing the challenges 
imposed due to missing diacritics is evidence of 
the utility of our work. Sophisticated and 
advanced technologies coupled with advanced 
expert rules used to automate diacritization lack 
in accuracy and make significant errors (11.4 %). 
Morphological analysers avoid partial diacritics 

in analysis and defer the task for interested NLP 
applications to use them as filters later.  
To conclude, we are the first to approach the 
diacritic placement problem as a word-to-word 
comparison problem. Leveraging our algorithms, 
NLP tools can reduce ambiguity by placing the 
diacritics that matter. Users at the entry level also 
can be encouraged to introduce the minimal 
number of diacritics that matter to reduce 
ambiguity.  

3 The IRA Algorithm 

Before delving into the details of how the 
algorithm works, we present a few definitions. 

Definition 1 (Implication Relation): Given two 
Arabic words w1 and w2, an implication 
relationship denotes that w1 implies w2 iff both 
words have the same letters and every letter in w1 
has the same order and same (or less) diacritics as 
the corresponding letter in w2. See the words 
 in Table 1.1 as an example. If both w1 (فعََل(َ)فعَل)
implies w2 and w2 implies w1, then the two words 
are called compatible; Otherwise, in case of no 
implication, the words are incompatible. 

Implication Direction Meaning Example 

0, -1 incompatible ََََثعَلبَفَعل،  

1 w1 implies w2 َفعلَ،َفَعل 

2 w2 implies w1 فَعلَ ،َفعل 

3 Compatible  فعلَ ،َفَعل 

Table 3.1 Implication Direction with examples 

Definition 2 (Distance Map): A distance map 
denotes a matrix of all possible pairs of Arabic 
diacritics and a distance value between them (see 
Table 3.2). The value represents a score of 
interchangeability. Two diacritics are 
interchangeable if either one can replace the other 
on a character in a word without changing the 
meaning of the word. A distance map tuple <d1, 
d2, delta> denotes the two diacritics by d1 and d2 
and the distance score by delta. As will be 
discussed later, the IRA algorithm uses this 
distance map to calculate the distance between 
two words. For example, the distance between the 
diacritics fatHa and kasra is 1. When the shadda 
or hamza appear as either d1 or d2, and the 
compared diacritic is different, the distance 
equates 15 (but it can be also 4 depending on 
which letter has the diacritics, as will be 
explained later). 
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Table 3.3 Diacritic Pair Distance Hash Map 
 Fatha Dhamma Kasra Sukun Fathatan Kasratan Dhammatan Shadda Hamza 

No Diacritic 1 1 1 1 1 1 1 1 1 

Fatha 0 1 1 1 1 1 1 15 15 

Dhamma 1 0 1 1 1 1 1 15 15 

Kasra 1 1 0 1 1 1 1 15 15 

Sukun 1 1 1 0 1 1 1 15 15 

Fathatan 1 1 1 1 0 1 1 15 15 

Kasratan 1 1 1 1 1 0 1 15 15 

Dhammatan 1 1 1 1 1 1 0 15 15 

Shadda 15 15 15 15 15 15 15 0 15 

Hamza 15 15 15 15 15 15 15 15 0 

Definition 3 (Conflicting Diacritics): Two 
diacritics are called conflicting diacritics if they 
are distinct and appear on the same character of a 
given word. That is, given words w1 and w2, for a 
pair of diacritics d1 and d2, where d1 is located in 
w1 at the corresponding position of d2 in w2, if d1 
does not equal d2, then d1 and d2 are conflicting 
diacritics and w1 is incompatible with w2. 
Definition 4 (Words Matching): The matching 
between two Arabic words is defined as a tuple 
<w1, w2, implication direction, implication 
distance, conflicts, verdict>. The w1 and w2 
elements are the two words to be compared. The 
implication direction is a number denoting the 
relationship between the two words Table 3.1. 
The implication distance depicts the overall 
similarity of the diacritization implication 
between the two words, which we compute based 
on the distance map. The conflict elements denote 
the number of conflicting diacritics between the 
two words. Finally, verdict takes one of the 
values: ‘Same’, or ‘Different’, to state whether w1 
and w2 are matching.  

3.1 Description of IRA Algorithm 

The IRA algorithm takes two words as input and 
produces the matching tuple defined by definition 
4. For each input word, IRA generates two arrays, 
one for the letters (each letter receiving a cell) and 
one for diacritics (each diacritic in a cell). The 
words are then checked to find if they contain the 
same letters. If so, then for each pair of 
corresponding letters, an implication value and a 
distance is assigned. Figure 3.1 illustrates an 
example of comparing two words (َََفعَل) and (فعَل). 

Implication between letter pairs is determined 
as follows. When both letters have exactly the 
same diacritics (see Table 3.1), a score of 3 is 
assigned to the corresponding position in the 
implication array. If the pair has conflicting 
diacritics, a score of 0 is assigned to the pair in 
the array's corresponding position. If the first 

letter in the pair is missing a diacritic present on 
the second letter, then an implication direction of 
1 is assigned to the pair in the array's 
corresponding position. If the second letter in the 
pair is missing a diacritic present in the first one, 
an implication score of 2 is assigned to the pair in 
the array's corresponding position.  
Implication between two words is determined 
as follows. Once an implication value is assigned 
for each pair of letters, the implication array is 
observed. If all entries in the implication array 
contain a value of 3, then an overall implication 
value of 3 is returned. If all entries in the array 
contain a value of either 1 or 3, then an overall 
implication of 1 is returned. If all entries contain 
a value of either 2 or 3, then an overall 
implication of 2 is returned. Though, if there 
exists at least one 0 or both 1 and 2 are in the 
array, then an overall implication of 0 is returned. 
The implication distance between two words is 
determined as the following. While generating 
the implication array, the algorithm loops through 
the diacritic arrays. For each pair of diacritics, the 
algorithm returns a distance from the distance 
map and adds it to the overall distance value. 
Once the algorithm returns both the implication 
direction and the distance values, it returns a 
verdict of “Same” if the overall implication 
direction equals 3, 2, or 1. Otherwise, when the 
overall implication is equal to 0, there is no clear 
implication between the two words and the 
verdict is “Different”. Note that the distance 
value between two words does not impact the 
implication value or the verdict. The distance is 
returned by the algorithm as an extra measure and 
only to indicate how much two words are close to 
each other’s diacritics.   
 

 
Figure 3.1 Implication Example 

 

* Due to the IRA algorithm’s full description being slightly lengthy, 

the full details of the IRA algorithm are presented and diagrammed 
in http://www.jarrar.info/publications/JZR16_IRA.pdf 

http://www.jarrar.info/publications/JZR16_IRA.pdf
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3.2 Special Cases 

In this subsection we specify the special cases 
that our algorithm fine-tune to increase the 
accuracy of the results. We learned of these 
special cases and how to handle them through 
intensive manual comparisons and investigations 
between similar words in our dataset. These 
special cases are those of: diacritics on the last 
letter of a word being compared, the hamza, the 
shadda, and the sokoon. 

Diacritics on the last letter of a word are a special 
case, as differences in diacritization do not 
change the meaning of the word. Considering 
this, the algorithm neglects the diacritics on the 
last letter of the words being compared. 
The case of the shadda is also special. We use 
different weights for calculating word distance 
depending on the position of shadda in a word. 
When on the first letter of a word, the distance of 
a pair including the shadda is 4 if the diacritics 
are not the same, as people tend to ignore shadda 
in the beginning of a word most the time. In the 
case of shadda on any other letter in the middle of 
a word, this distance increases to 15.  
This distance changes because the shadda plays a 
much larger role when found in the middle of the 
word, as opposed to the beginning. When on the 
first letter of a word, it does not singlehandedly 
determine whether two words are the same, 
whereas it can certainly determine whether two 
words are the same or not when found in the 
middle of a word. 
The case of the hamza is similar to that of the 
shadda. When found atop the first letter of a 
word, it is considered a diacritic, rather than a 
letter. As found in the case of the shadda, when 
the hamza is on the first letter of a word, the 
distance of the diacritic pair is 4 if the diacritics 
are not the same. In all other cases, the hamza is 
considered a letter and treated as such. In other 
words, the hamza is treated as and considered a 
letter only when it appears after the first letter in 
a word. 
The sokoon is a peculiar case. This is because it 
carries no sound. Because of this, it is usually 
neglected in writing, where a letter that is not 
diacritized is usually taken as a letter diacritized 
with a sokoon. As a result, in the Diacritic Map, 
the sokoon has a weight of 0 when alone and not 
compared to another diacritic. Otherwise, the 
weight differs depending on the other diacritic. 

As stated earlier, our algorithm is always sound 
over all the dictionary words it covers. We 
established soundness by iterating few times over 
the data set and refining for the non-deterministic 
results after each iteration. The refinement was 
based on input from a linguistic expert who 
carefully evaluated whether all critical cases are 
valid results, and what the correct result should 
have been. The refinement included changes to 
distance map entries and modifications of the 
special cases.  
The linguistic rules implemented in IRA also play 
a vital role in determining the weights within the 
Diacritic Map. Especially in the cases of the 
shadda and hamza, the heavy weights of the 
diacritics were largely influenced by the 
linguistic properties these diacritics have.  
As will be discussed in the evaluation section, and 
in the use case section, the IRA algorithm is 
100% sound, and 100% complete w.r.t. to the 
used dataset that makes it fairly comprehensive. 
We used the algorithm to match between Arabic 
verbs in the ALMOR’s dataset and 37 other 
lexicons. These lexicons represent different 
levels of diacritization, ranging from fully 
diacritized to non-diacritized words.  

4 The MSA Algorithm 

The MSA algorithm takes two Arabic words w1 
and w2 and returns a score between 0 and 1 that 
denotes how much w1 can morphologically 
subsume w2. Before presenting the how the 
algorithm works we must define a few notions.  

Definition (Morpheme) A morpheme is the 
smallest unit of morphological structure of a 
given word. For Arabic, a morpheme is either an 
affix or a stem. The affix is either a prefix or a 
suffix. The stem could be a root or an inflection of 
the root. A word is the concatenation of 
connecting prefix, stem and suffix morphemes 
where the prefix and the suffix could be empty 
strings. Morpheme connectivity is a predefined 
relation. For example, the prefix ََيـ ya connects to 
the stem لعب l’b (play) to form the word يلعب 
yal’b (is playing). Each morpheme is associated 
with morphological features such as part of 
speech (POS), transliteration, lemma and gloss.  
Definition (Morphological analysis) The 
morphological analysis of a given word w is the 
set of all possible morpheme concatenations that 
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form w. A word may have more than one 
morphological solution and one solution may 
have more than one set of features associated with 
it. Table 4.1 illustrates three different solutions 
for the word أحمدهم (Ahmdhm). The first solution 
differs than the other two in diacritics, morpheme 
segmentation and translation. The other two agree 
in diacritics and morpheme segmentation 
however, they differ in meaning.  

Translation  Suffix Stem Prefix 

Did he praise them? aAhamidahom أ حَمِد هم 

Their Ahmad aAhmadahom أحَْمَد هم  

The best of them aAhmadahom أحَْمَد هم  

Table 4.1 Three morphological solutions for أحمدهم 

Definition (Morphology subsume relation) We 
say word w1 morphologically subsumes word w2 
if the morphological analysis of w1 returns a set 
of solutions including the set of solutions returned 
by the morphological analysis of w2. For 
example, the words أحمدهم without diacritics, or 
with one fatha on the first letter, morphologically 
subsumes أحََمِدهَم and أحَْمَدهَم.  

Definition (Morphology distance metric) The 
morphological distance metric between two 
words w1 and w2 measures how much w1 can 
morphologically disambiguate w2. If w1 and w2 

fully match in discretized and non-discretized 
characters, then the distance is 0; which denotes 
similarity. If w1 and w2 have different non-
diacritic characters, then the metric is 1; which is 
the maximum distance and the words are deemed 
different. In case the words have the same non-
discretized characters, the metric is calculated as 
1 − |𝑀2 − 𝑀1 | ⁄ |𝑀2 | where M1 and M2 are 
the sets of morphological solutions of w1 and w2 
respectively, and |M| denotes the cardinality of 
M. Intuitively, the distance is a ratio measure of 
how many solutions of M2 can be eliminated by 
the diacritics of M1.  

4.1 Description of MSA Algorithm 

As explained earlier, this algorithm takes two 
Arabic words w1 and w2 and returns a score that 
denotes how much w1 can morphologically 
subsume w2. The algorithm (See MSAMetric in 
Figure 4.1) makes use first of a diacritic 
consistency algorithm isDiacriticConsistent 
shown in Figure 4.2.  

Algorithm isDiacriticConsistent takes the two 
words and makes sure the sequence of non-

diacritic characters is an exact match and the 
partial diacritics included in the two words are 
consistent. Two diacritics are considered 
consistent if they are not conflicting diacritics. 
For example, consider the Arabic word شاهد with 
two possible full diacritizations شَاْهَد (Shahad) 
watched and شَاْهِد (Shahid) witness. The partially 
diacritized words دشَاه  and شاهِد are diacritic 
consistent as there is no conflict in diacritic 
assignment between them. However, the partially 
diacrized words شاهَد and شاهِد are not diacritic 
consistent since the fatha and the kasra on the 
third letter are conflicting. 
If isDiacriticConsistent returned false, the MSA 
algorithm reports that the two words are distinct 
by returning a score of 1. Otherwise, the MSA 
algorithm uses an existing morphological 
analyser [22] to compute the morphological 
solutions M1 and M2 of w1 and w2, respectively. 
It also computes M, the morphological solutions 
of w, the non-diacriticized form of both w1 and 
w2. The MSA computes M1Minus, the 
complement of M1 in M, or intuitively the 
solutions that are eliminated due to the diacritics 
present in w1. Then, the algorithm computes M12 
by subtraction M1Minus from M2. Intuitively, 
this is the set of solutions that would have been 
eliminated from M2 by the diacritics of w1. The 
metric finally computes and returns the ratio of 
the eliminated solutions to the solutions of w2.  
Consider the illustrative example in Table 4.2. 
The entries in Table 4.2 show five different 
morphological solutions (|M| = 5) of the non-
vocalized Arabic word بن (w). The same word 
with a kasra on the first letter بِن (w1) has four 
solutions (|M1| = 4). The same word with a 
shadda on the second letter َّبن (w2) has two 
solutions (|M2| = 2). The set M1Minus has only 
one element  ُّبن. The set M12 eliminates  ُّبن and 
has consequently one solution  ِّبن. Intuitively, 
since w1 and w2 are diacritic consisting and have 
no conflicting diacritics, the kasra on w1 implies 
half the solutions of w2 while the shadda of w2 
implies one fourth the solutions of w1.  

  Transliteration Semantics POS 

 bun~ Coffee NOUN بنَُّ

 bin/ben Name of a person بِن

(like Benjamin) 

NOUN_PROP 

 bin Son Noun بِن

 bin+na They (female بِنََّ

plural) appear 

VERB_PERFECT+

PVSUFF_SUBJ:3F 

 bi+n with Noon (name بِن

of a person) 

PREP+NOUN_PR

OP 

Table 4.2: Morphological solutions for بن 
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Double MSAMetric (Word w1 , Word w2 ) 
    if (isDiacriticConsistent(w1, w2) == False)  
 return 1; 
    // both w1 and w2 are consistent w is w1 and w2  
    //without diacritics 
    Word w = removeDiacritics(w1); 
    // compute the morphological solutions  
    Solutions M = analyser(w); 
    Solutions M1 = analyser(w1); 
    Solutions M2 = analyser (w2); 
    // M1Minus are the solutions that w1 diacritics 
    // eliminated from M to form M1 
    Solutions M1Minus = M – M1; 
    // M12 are the solutions w1 diacritics (that are not in 
    // conflict with w2) would have eliminated from w2  
   Solutions M12 = M2 – M1minus; 
return 1 – M12.size / M2.size; 

Figure 4.1 MSAMetric Algorithm 

bool isDiacriticConsistent(Word w1 , Word w2 ) 
    int i1 =0, i2 =0; 
    Diacritics d1, d2 ; 
     while (i1 < w1.size && i2 < w2.size) 
 if (!equals(w1[i1], w2[i2])) 
    return false; 
 i1 ++; i2 ++; 
 d1.clear(); d2.clear(); 
 while (i1 < w1.size && isDiacritic(w1[i1])) 
       d1.add(w1[i1]); 
       i1 ++; 
   endwhile // traverse w1 till next non-diacritic 
    while (i2 < w2.size && isDiacritic(w2[i2])) 
       d2.add(w2[i2]); 
       i2 ++; 
     endwhile // traverse w2 till next non-diacritic 
     if (!isConsistent(d1 ,d2)) 
        return false; 
     endwhile //traverse all of w1 and w2  
return (i1 == w1.size && i2 == w2.size); 

Figure 4.2 isDiacriticConsistent Algorithm 

5 Evaluation and Discussion 

This section presents the evaluation of both, the 
IRA and MSA algorithms, whether they are 
sound and complete, which was experimented 
over a large dataset of about 36K pairs of words. 
First, we define the notion of soundness and 
completeness, then we present our dataset, and 
discuss the results.  

Definition (Soundness) As known in logic, we 
define the soundness of our algorithms as whether 
the results of the algorithm are correct or not. 
That is, if the algorithm judges two words to be 
same, or to be different, and this answer is always 
correct then the algorithm is called sound. As will 
be described later, our matching algorithms are 
both sound.   
Definition (Completeness) As is also known in 
logic, we define the completeness of our 
algorithms as whether the algorithm is always 

able to judge whether two words to be same or 
different. If so, then the algorithm is called 
complete. As will be described later, our 
matching algorithm is not complete. However, 
our experiment below demonstrates that it 
provides 97% ground coverage. 

5.1 Experiment Setup and preparation.  

To evaluate the soundness and completeness of 
the algorithms we need to prepare a large dataset 
of pairs of words, run both algorithms and 
evaluate their results. To do this, we have 
collected 16,408 distinct Arabic verb words 
extracted from 38 different dictionaries. 
Afterwards, we used ALMOR [22] to retrieve 
possible matches of the collected 16,408 words. 
The retrieved matching words by ALMOR 
generated 35,203 pairs to compare.  

The dictionaries we collected are at different 
levels of diacritization. For instance, the Al-
Maany, Al-Waseet, Al-Ramooz, and the 
Dictionary of Scientific, Technical and 
Engineering Terms are each filled with highly 
diacritized verbs. Dictionaries of medium-level 
diacritization included, for example, the 
Biological Lexicon of Biology and Agricultural 
Sciences, the Dictionary of Economic Terms, and 
the Dictionary of Statistics. Dictionaries 
providing no diacritics on their words include the 
Hydrology Glossary, the Lexicon of Chemicals 
and Pharmaceuticals, the Lexicon of Education 
and Psychology, and the Historical and 
Geological Lexicon. A high level of diacritization 
entails that all or most diacritics of a word are 
written on the word. A medium level of 
diacritization provides a word with few diacritics 
present on the word. Selecting dictionaries with 
different levels of diacritization is important for 
our experiment as this provides a granular scope 
of the performance and extent of the capabilities 
of our algorithm. 

The collected verb words were run through the 
ALMOR Arabic word analyser using the SAMA 
3.0 database. ALMOR retrieved highly 
diacritized words that were similar (in 
appearance and spelling) to the input words. For 
each input word (of the 16,408 words), ALMOR 
returned a fully discretized that is possibly the 
same word as the input word. That is, the output 
of this process is a set of pairs where the first 
word that is partially discretized, and the second 
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word, from ALMOR, is fully discretized. In this 
process, after giving ALMOR our 16,408 words, 
it produced 35,203 distinct pairs of words. A 
sample of the dictionaries and the amount of pairs 
that we were able to retrieve from each dictionary 
is presented in Error! Reference source not 
found..  

The 35,203 pairs of words were input to our 
both matching algorithms to find whether each 
pair is equal or not. The results then given to a 
linguist to manually verify the algorithms’ 
decisions.  

 Dictionary Diacritization 

Level 

Words 

Used 

Word Pairs 

Generated 

Al-Ramooz High 8,734 19,296 

Al-Waseet High 8,033 17,721 

Al-Ma`any High 4,351 9,750 

Al-Mustalahat High 2,263 4,527 

Pharmaceutical Dictionary None 572 1,211 

Nubian Dictionary None 561 1,175 

Philosophical Dictionary None 133 307 

Statistical Dictionary Medium 45 79 

Table 5.1 Sample of the dictionaries experimented on 

5.2 Results and Discussion 

After running the IRA algorithm, we found that 
it was able to judge all of 35,203 word pairs 
correctly. That is, the experiment yielded a 
success rate of 100% in terms of reaching a 
conclusive result. These results are also 
confirmed not only through the manual 
evaluation by an expert linguist, but also by the 
second MSA algorithm, as will be explained later. 
It is worth noting that the manual evaluation 
happened in two iterations. During the first 
iteration, the IRA was able to only correctly judge 
97.6% of pairs, but then we learned and identified 
some special cases (the cases of Shadda and 
Hamza at the first letter of a word, discussed in 
section 3.2) and fine-tuned the IRA algorithm 
accordingly. As a result, we claim that the IRA 
algorithm is sound.  

Although the IRA was able to correctly judge 
100% the 35,203 word pairs, claiming that it is 
complete is a tricky case. This is because we 
cannot be absolutely sure, by nature of this 
problem, whether there might be any existing 
case where the IRA cannot judge. However, since 
we have evaluated the algorithm on a large 
number of dictionary entries that cover lots of the 
ground, we claim that it is fairly comprehensive. 
That is, we claim that IRA was complete for the 

given dataset, which itself represent a vast 
majority of language entries. 

In case the IRA need to be used in extreme or 
very sensitive applications -for example in case 
one likes to consider two words with Hamza or 
Shadda difference to be different words- then we 
recommend to us the distance value computed by 
the algorithm. In case the distance value is 15 or 
more, it indicates that that the two words have 
Hamza or Shadda differences. However, based on 
comparing the 35k word pairs, we believe that 
Hamza or Shadda on the first letters do not have 
any impact on the decision.  

After running the MSA algorithm on the 
35,203 word pairs that we verified manually by 
an expet linguist, the MSA was able judge 95% 
of the pairs. The other 5% could not be judged 
because ALMOR did not return any solution. 
That is, the comprehensiveness of the MSA 
depends on the morphological analyser used and 
the comprehensiveness of its database, which is 
95% in our case. 

The soundness of MSA was 93%. This was 
calculated by comparing the judgments of the 
MSA with the judgments of the IRA that we 
verified manually, and in 93% of cases both 
algorithms agree.  

Based on the above results, we would like to 
remark the IRA algorithm is computationally 
lighter than the MSA algorithm and does not 
require computation of morphological features to 
produce a highly accurate comparison result. This 
is evident in the high level of agreement between 
both algorithms. Therefore, it is advisable that 
Arabic text processing, including NLP 
applications that do not require morphological 
preprocessing, use the IRA algorithm instead of 
the MSA algorithm for word-to-word 
comparisons. Examples of such applications are 
those needing either word frequency or word 
colocation computations. 

The MSA algorithm should be used in case 
morphological solutions and features are anyway 
needed and computed in the NLP application. 
Example for such applications are POS tagging 
and syntactic analysis.  

6 Use Case (Lemma Disambiguation) 

This section presents a use case to demonstrate 
the utility of our algorithm. In our VerbMesh 
project, which aimed to build a large graph of 
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Arabic verbs, we needed to link verbs found in 
hundreds of Arabic dictionaries that we currently 
possess at Birzeit University. Basic string-
matching techniques alone do not suffice to 
match and link two verbs, as verbs with same 
spelling but different linguistic properties lead to 
incorrect and undesired matching. Instead, we 
used lemmas to match between verbs. Verbs 
having the same lemma are considered same 
entries. In other words, same verbs across 
dictionaries are linked with their lemmas, 
although they might be diacritized differently. 

To assign a lemma to each verb in every 
dictionary, we used the ALMOR morphological 
analyser, utilizing the SAMA 3.0 database. The 
major challenge we faced in this approach was 
that ALMOR returned too many lemmas for each 
dictionary entry. For example, ALMOR returns 
13 different lemmas for the entry ََنَحُل, which are 
 , حالَُ , نَحُلَُ , حَلوَُُ , حَلَى , حَلِيََ , حَلَِّ , نَحِلََ ,نَحَلَُ , نَحَل ََ}
 An undiacritized word can .{حَلَّى, أحََلَّ , أحَال , حَلَ 
bring an extra level of ambiguity. An example of 
such a case can be seen when inputting the word 
 into ALMOR, where the resulting lemmas سلب
are {ََُسَلِبََ ,سَلب}. This is because ALMOR takes a 
word as input, segments it, and uses the stem to 
find other words with a similar stem and their 
lemmas. As a result, multiple lemmas are 
returned for each ALMOR’s word input. 
Therefore, a further disambiguation of lemmas 
was needed, which is where our algorithm plays 
an essential role. 

By using ourَ IRA matching algorithm, after 
ALMOR’s lemmatization, we were able to filter 
and disambiguate the lemmas provided by 
ALMOR, and keep only the correct lemmas. 
Taking each verb-lemma pair as input, our 
algorithms decided whether each pair had an 
implication relationship. For instance, after 
lemmatizing the 8,731 verbs found in Al-Waseet 
(No.3 in Table 6.1), 17,721 word pairs were 
returned by ALMOR; among them incorrect 
lemmas. After using our matching algorithm to 
filter out those the incorrect lemmas (i.e., with 
different incompatible diacritics), we were able to 
reduce the amount of matching pairs to 4,766 
correctly matched pairs. In the case of the Al-
Ramooz dictionary (No. 2), which includes 9,866 
verbs, ALMOR returned 19,296 different pairs of 
words. After running the resulting pairs through 
the IRA algorithm, we were left with 4,575 pairs 
considered correctly matched.  

No Dictionary Verbs 
Initial 

Pairs 

Correct 

Pairs 

 2,504 9,750 4,425 قاموسَالمعاني 1

 4,575 19,296 9,866 معجمَالراموزَالوسيطَللأفعال 2

 4,766 17,721 8,731 المعجمَالوسيطَفيَتصريفَالافعال 3

 915 4,523 7,021 قاموسَالمصطلحاتَالعلميةَوالفنيةَوالهندسية 4

 299 1,175 1,118 القاموسَالنوبي 5

 316 1,211 1,101 قاموسَالصيدلة 6

 63 245 244 قاموسَومصطلحاتَاليونسيف 7

 68 271 254 قاموسَالخدمةَالاجتماعيةَالطبية 8

 35 213 276 القاموسَالرياضي 9

Table 6.1 Matching Algorithm Lemma Reduction 

Table 6.1 provides a sample of the dictionaries we 
matched, which provide an evidence of not only 
the algorithm’s success, but also of the added 
utility when used on top of other programs, such 
as morphological analysers. On average, the 
amount of word pairs originally proposed by 
ALMOR were reduced by 74.8% using the IRA 
algorithm. The remaining 25.2% of the word 
pairs are all pairs that are certain matches. This 
ensures the words being linked are, with 
certainty, the same words under the same lexeme. 
That is, the matching algorithm can be used with 
ALMOR or MADA in order to provide further 
filtration of the analysis and bring more desired 
results. 

7 Conclusion and future work 

In this paper, we presented two algorithms that 
compare a pair of Arabic words with the same 
non-diacritic characters but with different 
diacritics. The IRA algorithms encodes expert 
knowledge in a set of expert rules and reports an 
implication direction, an implication measure and 
a matching verdict. The MSA algorithm 
computes the morphological subsumption 
relation of one word with respect to the other. We 
evaluated both algorithms and experiments show 
that both algorithms are sound and agree on 93% 
on their recall intersection. 

Future plans for the presented algorithms 
include further testing with an even larger dataset 
than the over 35,000 pairs used, and using word 
forms such as nouns and adjectives. Using larger 
data sets for testing will allow for even more 
granular fine-tuning of the IRA algorithm’s 
criteria for word-matching. Also planned is the 
expansion of the algorithms to include taking 
multi-word phrases as input and returning sets of 
words considered equal. 

Acknowledgement 



  11 

This research was partially funded by Birzeit 
University (VerbMesh project) and partially by 
Google’s Faculty Research Award to Prof. Jarrar. 
The authors are also very thankful to Mohammad 
Dwaikat, Faeq Rimawi and Reema Taha for 
helping in the implementation and in the manual 
evaluation of the results. 

8 References  

[1] M. A. Attia, “Handling Arabic morphological 

and syntactic ambiguity within the lfg 

framework with a view to machine 

translation,” Ph.D. dissertation,  University 

of Manchester, 2008. 

[2] G. A. Kiraz, “Arabic computational 

morphology in the west,” Conference and 

Exhibition on Multilingual Computing, 

1998, pp. 101–110. 

[3] T. Buckwalter, “Buckwalter Arabic 

morphological analyser version 1.0,” LDC 

catalog number LDC2002L49, Tech. Rep. 

[4] M. Boujelben, C. Aloulou, and L. Hadrich 

Belguith, “Toward a robust 

detection/correction system for the 

agreement errors in non-voweled Arabic 

texts,” in Proc. ACIT 2008.  

[5] F. Debili, H. Achour, and E. Souissi, “De 

letiquetage grammatical a la voyellation 

automatique de larabe,” Tech. Rep. 2002. 

[6] N. Chaaben Kammoun, L. Hadrich Belguith, 

and A. Ben Hamadou, “The morph2 new 

version: A robust morphological analyser 

for Arabic texts,” ser. JADT 2010, June. 

 [8] K. R. Beesley, “Finite-state morphological 

analysis and generation of Arabic at xerox 

research: Status and plans,” in ALP 

Workshop , France, 2001, pp. 1–8. 

[9] S. Kulick, A. Bies, and M. Maamouri, 

“Consistent and flexible integration of 

morphological annotation in the Arabic 

treebank,” in Proc. LREC’2010, Malta, 

[10] D. Vergyri and K. Kirchhoff, “Automatic 

diacritization of Arabic for acoustic 

modeling in speech recognition,” in Proc. of 

CAASL, ACL, 2004, pp. 66–73 

 [12] A. M. Seraye, “The role of short vowels and 

context in the reading of Arabic, 

comprehension and word recognition of 

highly skilled readers,” Ph.D. Thesis 2004.  

[13] M. Khorsheed, “An HMM-based system to 

diacritize Arabic text,” SEA, V. 5, 2013. 

[14] A. Said, M. El-Sharqwi, A. Chalabi, and E. 

Kamal, “A hybrid approach for Arabic 

diacritization,” in NLPIS Systems. 

Springer, 2013, pp. 53–64. 

[15] A. M. Hattab and A. K. Hussain, “Hybrid 

statistical and morphosyntactical Arabic 

language diacritizing system.” Journal of 

Academic Research, vol. 4, no. 4, 2012. 

[16] A. O. Bahanshal and H. S. Al-Khalifa, “A 

first approach to the evaluation of Arabic 

diacritization systems,” (ICDIM), IEEE, 

2012, pp. 155–158. 

[17] S. Alqrainy, H. AlSerhan, and A. Ayesh, 

“Pattern-based algorithm for part-of-speech 

tagging Arabic text,” ICCES 2008. pp. 119–

124. 

[18] Arabic Morphological Tagging, 

Diacritization, and Lemmatization Using 

Lexeme Models and Feature Ranking. 

Columbus, Ohio: ACL, 06/2008.  

[20] N. Habash, O. Rambow, and R. Roth, 

“Mada+tokan: A toolkit for Arabic 

tokenization, diacritization, morphological 

disambiguation, pos tagging, stemming and 

lemmatization,” in Proc. ICALRT, 

MEDAR, 2009. 

[21] M. Rashwan, M. Al-Badrashiny, M. Attia, S. 

Abdou, and A. Rafea,“A stochastic Arabic 

diacritizer based on a hybrid of factorized 

and unfactorized textual features,” IEEE 

TASLP, vol. 19, no. 1, pp. 166–175, 2011. 

[22] N. Habash, "Arabic Morphological 

Representations for Machine Translation", 

book chapter, Vol. 38, pp 263-285 

 

 

 


