

Diacritic-Aware Arabic Word Matching

Mustafa Jarrara, Fadi A. Zaraketb, Rami Asiaa

aBirzeit University, West Bank, Palestine
bAmerican University of Beirut, Lebanon

Abstract Words in Arabic consist of letters and short vowel symbols called diacritics that are typically inscribed

atop regular letters. Changing some diacritics may change both the syntax and semantics of a word; turning a

word into another. These results in difficulties when matching two or more words solely based on basic string

matching techniques. Typically, Arabic NLP applications resort to morphological analysis to battle ambiguity

originating from this and other challenges. In this paper, we introduce the implication relationship algorithm (IRA)

which takes two words with the same non-diacritic letters and decides whether they are the same or not. It

compares the words and computes a distance metric between diacritics. Second, we introduce the morphology

subsume algorithm (MSA) which computes a metric that measures how much one word is a morphological

replacement of another word with the same non-diacritic letters. Both algorithms are sound. When each makes a

full decision, its decision is always correct. However, MSA is incomplete as it cannot make a decision in a number

of cases; which could be the case for expert human readers as they might require context to decide as well.

Nevertheless, our experiments show that after several refinement iterations for IRA rules, IRA provides an answer

for 100% of the word pairs given, and MSA provides an answer for about 95% of the words given. Both IRA and

MSA distance metrics agree on 93% of the intersection. The high agreement value is evidence that Arabic NLP

applications that do not directly need the morphological features may use the computationally-lighter IRA

algorithm for disambiguation. We demonstrate this result with a lemma disambiguation case study.

Keywords: Arabic; NLP; Natural language processing; implication; diacritics; disambiguation.

1 Introduction

Diacritics are distinguishing features of the
Arabic language. Diacritics in Arabic have two
main roles: (i) they provide a phonetic guide i.e.
help readers recite/articulate the text correctly,
and (ii) they disambiguate the intended meaning
of otherwise ambiguous words. Table 1 shows a
list of the most used diacritics of the modern
standard Arabic (MSA) language. The fatha and
kasra diacritics show as accents above and below
the corresponding letter and indicate short ‘a’ and
‘i’ vowels, respectively. The dhamma diacritic
shows as an accent with a small circle and denotes
a short ‘o’ vowel. A sukoon shows a small circle
atop and denotes a silent letter. A shadda is a
gemination marker seen above a letter. It denotes
stressing the letter such that the letter is
pronounced twice: first as a silent letter and
second with a non-sokoun diacritic. A tanween
diacritic is an indefiniteness mark and shows as a
double fatha, kasra, or dhamma diacritic. It
denotes the letter spelled with the marked
diacritic followed by a silent ‘n’ sound.

Table 1 Basic diacritic table in Buckwalter

Diacritic Shape Example

fatha (short a) َرَسَمََ ــ (rasama) drew

damma (short o) ُسنُبلةَ ــ (sonobulap) spike (of grain)

kasra (short y) ِسِهام ــ (sihAm) arrows

sokoun (silent vowel) ْسِعْرَ ــ (siEor) price

shadda (stress mark) ّهدَّد ــ (had~ad) threatened

tanween-fatha ًأبداًَ ــ (abadAF) never

tanween-dhamma ٌقلمٌَ ــ (kalamON) pen

Tanween-kasra ٍشعبٍَ ــ($aEobIN) people

It is common practice for Arabs to write
Arabic text without diacritics, which makes
Arabic text highly ambiguous [1]. Ambiguity
refers to the fact that the morphological, syntactic
or semantic analysis of one word may lead to
several possible various word matches. That is,
two words with the same non-diacritic characters
but with different and possibly omitted diacritic
characters are not necessarily the same. While
morphological analysis is key in current
automated analysis techniques for Arabic text, it
is known that morphological ambiguity is a
`notorious' problem for the Arabic language [2].

The results of [5], cited in [4], state that non-
diacriticized words exhibit 8.7 syntactical

2

ambiguity on the average which drops to 5.6 for
diacriticized words. For instance, the word جزر
(jzr) has different interpretations based on
diacritization; e.g. جَزَر (jazar) means carrots,

زُرجَُ (jozor) means islands, and جَزْر (jazr) means
the fallback of the tide. The word ََجَزَر (jazara) is
a past tense verb meaning “butchered".
The use of diacritics for disambiguation is not
restricted to human readers. It applies also to
automated tools such as morphological analysers.
Some morphological analysers such as [6][1] use
partial diacritics to resolve ambiguity, e.g. they
filter solutions that are inconsistent with diacritics
available in the input text.
Essential to the process of disambiguation is the
comparison of two Arabic words with the same
sequence of non-diacritic letters, but with different
diacritics. A simple string comparison of two Arabic
words such as word جزر (jzr) and جَزَر (jazar) returns
a negative result due to the two additional diacritics,
while readers identify them as the same word in a
sentence. Typical tools that provide Arabic editing
and searching services tend to ignore diacritics in
search and matching. In analogy, imagine ignoring
vowels in English. This means that tools need to
consider the words جَزَر (jazar) carrots and جُزُر
(jozor) islands as the same word.
In this paper, we present two algorithms that
compare words with similar non-diacritic letters
with possibly different diacritic letters, and study
their accuracy. The implication relationship
algorithm (IRA) checks whether one word w1
implies another word w2 with the same no-
diacritic letters. It compares the difference and
distance between diacritics to assist in testing
whether w1 and w2 are the same word or not. The
morphology subsume algorithm (MSA) checks
whether word w1 is morphologically superior to
another word w2 with similar non-diacritic letters.
It computes a score metric that measures how
much w1 is a morphological replacement of w2.
We evaluated both algorithms against a collection
of word pairs collected from several Arabic
dictionaries, resulting in 16,408 distinct words.
Each word was paired with potentially similar

* (https://github.com/SinaInstitute/ImpliCheck) or (http://

ontology.birzeit.edu/tools/verbmesh/DiacriticAwareMatching/inde
x.html)

words from the SAMA 3.1 database that the
ALMOR analyser proposed to be potentially the
same word. In the end, our evaluation was against
a set of 35,203 distinct word pairs. Both
algorithms are sound and exhibit high agreement.
When either IRA or MSA makes a full decision,
that decision is always correct. The MSA
algorithms is not complete as it cannot make a
decision in a small number of cases. Note that this
also could be the case for expert human readers
as they might require context to decide.
Nevertheless, IRA reported determined answers
for 100% of the pairs used in the experiment. The
IRA algorithm was fine-tuned based on the
feedback of an expert linguist who inspected the
results manually. The MSA provides an answer
for about 95% of the words given. The remaining
5% were missing in the lexicons of the
morphological analyser we used. Both the IRA
and the MSA distance metrics agreed on 93% of
the intersection. The source code of both
algorithms, as well as the datasets we used in the
experiments, are accessible online*.
The high level of agreement is evidence that
Arabic NLP applications that typically use
morphological analysis as a necessary pre-
processing step to battle ambiguity may use the
much lighter IRA algorithm instead, in case the
application did not directly need the
morphological features. We demonstrate this
claim with a lemma disambiguation case study.
The rest of this paper proceeds as follows. In
Section 2 we provide necessary definitions and
background. In Section 3, we present and discuss
the IRA algorithm. In Section 4, we present and
discuss the MSA algorithm. In Section 5, we
present related work and compare it to IRA and
MSA. We present the experimental setup and
detail our results in Section 6 and we discuss the
utility of our work for practical case studies in
Section 7. We conclude and discuss future work
in Section 8.

https://github.com/SinaInstitute/ImpliCheck)

 3

2 Related Work

We first review related work that stress the
importance of considering diacritics for
automated comprehension of Arabic text and for
ambiguity reduction [4][5][10][1][17]. Then we
review works that attempt to restore diacritics to
Arabic text [13][14][15][16][18][20][21]. Then
we review morphological resources that include
diacritic information [3][6][1][8][9].

Diacritics and disambiguation. Much literature
attested to the high ambiguity of un-vocalized
text and the power of diacritics in ambiguity
reduction. Programs that automatically add
diacritics to Arabic text exist in the software
industry (Sakhr, RDI). However, the commercial
products are closed source. They use
morphological analysis and syntax analysis to
predict the diacritics. The work in [10]
automatically adds diacritics for transcriptions of
spoken Arabic text and employs existing acoustic
information to predict the diacritics. The work in
[1] introduces an ambiguity controlled
morphological analyser that employs a rule based
system and finite state machines. The work
ignores diacritics when they exist in Arabic text
because it claims that it only found insignificant
meaningful diacritics when considering a large
corpus. It then illustrates how diacritics may be
used later on to filter vocalized solutions if
needed by the application using the
morphological analyser.
Both [10][1] quote from [5] that a dictionary
word with no diacritics has on average 2.9
different possible vocalizations and that a sample
text of 23 thousand words exhibited 11.6 different
diacritic assignments per word on average. The
same source reports that 74% of Arabic words
have more than one possible vocalization. It also
reports an average of 8.7 syntactical ambiguity
for unvocalized words, which drops to 5.6 for
vocalized words. This is evidence of the role of
diacritics in disambiguation of word forms.
The work in [4] presents problems in DECORA-
1 related to correction and error agreement
detection in Arabic text. They introduce an
enhancement, DECORA-2, that considers
diacritics to help resolve the problems. The work
in [4] claims that most Arabic text omits
diacritics, few Arabic teaching books have partial
diacritics, and only the Quran and teaching books

for early stages are fully vocalized. Studies in [4]
show that an Arabic word usually has six varying
vocalizations.
The work in [17] takes an Arabic word, checks it
against preset vocalization templates and returns
the POS tags of the word. The approach works for
a set of verbs and nouns and is reported to
decrease ambiguity when diacritics that vocalize
the last character of the pattern exist. This is
evidence of both the utility of diacritics in
disambiguation of POS tags and the importance
of where to place the diacritic within the word.
Nevertheless, the study in [12] concludes that the
presence of diacritics affects reading speed
negatively while increasing text comprehension
only when diacritics play a role in
disambiguation. It advises that writers must
provide diacritics economically when needed for
disambiguation of the intended meaning.
Diacritic restoration. The vast majority of work
on Arabic diacritics is concerned with restoring
diacritics to Arabic text [13][14][15][16][18] [20]
[21].
Among other morphological disambiguation
tasks, the work in [18] explores two diacritics
related tasks: DiacFull and DiacPart. DiacFull
restores diacritics to all letters of the word and
DiacPart restores them to all letters except the
final letter. The work uses a linear optimization
technique to select the best diacritization of the
given word. They confirm two important
hypotheses: 1) the use of lexeme features help in
determining the best diacritics, 2) tuning the
parameters of the optimization algorithm to the
task at hand helps the disambiguation task. In our
work, we manually fine-tuned weights that
characterize an arbitrary distance between
diacritics to reduce comparison errors and we
arrived at a similar result to hypothesis (1).
The work in [20] is a follow-on to [18]. It adds
diacritics to words in context of morphological
disambiguation and tokenization.
The work in [21] describes a commercial product
by RDI to automate diacritization of Arabic text.
It uses a stochastic process to decide the most
likely diacritic map. Since the map is not
necessarily grammatically correct and may be out
of the vocabulary, a second stochastic process
uses more features of the word including
morphological features to select the most likely
compatible solution out of a set of diacritic based
feature factorizations. This work is evidence of

4

how much partial diacritics can reduce
sophisticated work needed later to disambiguate
the Arabic text. With our MSA and IRA
algorithms one can infer the diacritic that most
reduces ambiguity and use it.
The work in [13] presents a system for Arabic
language diacritization using Hidden Markov
Models (HMMs). It represents each diacritic with
an HMM and uses the context of the whole text
to concatenate the HMM decisions and produce
the final diacritic sequence.
The work in [14] presents a hybrid system for
Arabic diacritization based on rule based and data
driven techniques. It uses morphological features
and out of vocabulary elimination techniques to
reduce the solutions. They do better than [18]
[20][21] by an absolute margin of 1.1% and still
make an 11.4 full diacritization word error rate.
This is evidence of how complex and
sophisticated the diacritization process is.
The work in [15] presents a system to diacritize
Arabic text automatically using a statistical
language model and morph-syntactical language
models. The work in [16] presents an evaluation
of three commercial Arabic diacritization
systems using fully diacritized text from the
Quran and short poems from the period of the
advent of Islam.
Existing morphological resources with
diacritics. In addition to automatic diacritization
tools, previous work includes tools that
disambiguate based on input diacritics. Analysers
such as Buckwalter [3] and SAMA [9], contain
the diacritization of lexicon entries in addition to
other annotations. However, they ignore the
partial diacritics in the analysis phase and the
analysis makes little benefit from lexicon
vocalizations. MORPHO3 [1], Arabic Xerox [8]
and MORPH2 [6] are other examples of
morphological analysers with the same
capability. They later filter morphological
solutions based on their consistency with
available diacritics.
In summary our related work, we find that the
vast amount of work discussing the challenges
imposed due to missing diacritics is evidence of
the utility of our work. Sophisticated and
advanced technologies coupled with advanced
expert rules used to automate diacritization lack
in accuracy and make significant errors (11.4 %).
Morphological analysers avoid partial diacritics

in analysis and defer the task for interested NLP
applications to use them as filters later.
To conclude, we are the first to approach the
diacritic placement problem as a word-to-word
comparison problem. Leveraging our algorithms,
NLP tools can reduce ambiguity by placing the
diacritics that matter. Users at the entry level also
can be encouraged to introduce the minimal
number of diacritics that matter to reduce
ambiguity.

3 The IRA Algorithm

Before delving into the details of how the
algorithm works, we present a few definitions.

Definition 1 (Implication Relation): Given two
Arabic words w1 and w2, an implication
relationship denotes that w1 implies w2 iff both
words have the same letters and every letter in w1
has the same order and same (or less) diacritics as
the corresponding letter in w2. See the words
 in Table 1.1 as an example. If both w1 (فعََل(َ)فعَل)
implies w2 and w2 implies w1, then the two words
are called compatible; Otherwise, in case of no
implication, the words are incompatible.

Implication Direction Meaning Example

0, -1 incompatible ََََثعَلبَفَعل،

1 w1 implies w2 َفعلَ،َفَعل

2 w2 implies w1 فَعلَ ،َفعل

3 Compatible فعلَ ،َفَعل

Table 3.1 Implication Direction with examples

Definition 2 (Distance Map): A distance map
denotes a matrix of all possible pairs of Arabic
diacritics and a distance value between them (see
Table 3.2). The value represents a score of
interchangeability. Two diacritics are
interchangeable if either one can replace the other
on a character in a word without changing the
meaning of the word. A distance map tuple <d1,
d2, delta> denotes the two diacritics by d1 and d2
and the distance score by delta. As will be
discussed later, the IRA algorithm uses this
distance map to calculate the distance between
two words. For example, the distance between the
diacritics fatHa and kasra is 1. When the shadda
or hamza appear as either d1 or d2, and the
compared diacritic is different, the distance
equates 15 (but it can be also 4 depending on
which letter has the diacritics, as will be
explained later).

 5

Table 3.3 Diacritic Pair Distance Hash Map
 Fatha Dhamma Kasra Sukun Fathatan Kasratan Dhammatan Shadda Hamza

No Diacritic 1 1 1 1 1 1 1 1 1

Fatha 0 1 1 1 1 1 1 15 15

Dhamma 1 0 1 1 1 1 1 15 15

Kasra 1 1 0 1 1 1 1 15 15

Sukun 1 1 1 0 1 1 1 15 15

Fathatan 1 1 1 1 0 1 1 15 15

Kasratan 1 1 1 1 1 0 1 15 15

Dhammatan 1 1 1 1 1 1 0 15 15

Shadda 15 15 15 15 15 15 15 0 15

Hamza 15 15 15 15 15 15 15 15 0

Definition 3 (Conflicting Diacritics): Two
diacritics are called conflicting diacritics if they
are distinct and appear on the same character of a
given word. That is, given words w1 and w2, for a
pair of diacritics d1 and d2, where d1 is located in
w1 at the corresponding position of d2 in w2, if d1
does not equal d2, then d1 and d2 are conflicting
diacritics and w1 is incompatible with w2.
Definition 4 (Words Matching): The matching
between two Arabic words is defined as a tuple
<w1, w2, implication direction, implication
distance, conflicts, verdict>. The w1 and w2
elements are the two words to be compared. The
implication direction is a number denoting the
relationship between the two words Table 3.1.
The implication distance depicts the overall
similarity of the diacritization implication
between the two words, which we compute based
on the distance map. The conflict elements denote
the number of conflicting diacritics between the
two words. Finally, verdict takes one of the
values: ‘Same’, or ‘Different’, to state whether w1
and w2 are matching.

3.1 Description of IRA Algorithm

The IRA algorithm takes two words as input and
produces the matching tuple defined by definition
4. For each input word, IRA generates two arrays,
one for the letters (each letter receiving a cell) and
one for diacritics (each diacritic in a cell). The
words are then checked to find if they contain the
same letters. If so, then for each pair of
corresponding letters, an implication value and a
distance is assigned. Figure 3.1 illustrates an
example of comparing two words (َََفعَل) and (فعَل).

Implication between letter pairs is determined
as follows. When both letters have exactly the
same diacritics (see Table 3.1), a score of 3 is
assigned to the corresponding position in the
implication array. If the pair has conflicting
diacritics, a score of 0 is assigned to the pair in
the array's corresponding position. If the first

letter in the pair is missing a diacritic present on
the second letter, then an implication direction of
1 is assigned to the pair in the array's
corresponding position. If the second letter in the
pair is missing a diacritic present in the first one,
an implication score of 2 is assigned to the pair in
the array's corresponding position.
Implication between two words is determined
as follows. Once an implication value is assigned
for each pair of letters, the implication array is
observed. If all entries in the implication array
contain a value of 3, then an overall implication
value of 3 is returned. If all entries in the array
contain a value of either 1 or 3, then an overall
implication of 1 is returned. If all entries contain
a value of either 2 or 3, then an overall
implication of 2 is returned. Though, if there
exists at least one 0 or both 1 and 2 are in the
array, then an overall implication of 0 is returned.
The implication distance between two words is
determined as the following. While generating
the implication array, the algorithm loops through
the diacritic arrays. For each pair of diacritics, the
algorithm returns a distance from the distance
map and adds it to the overall distance value.
Once the algorithm returns both the implication
direction and the distance values, it returns a
verdict of “Same” if the overall implication
direction equals 3, 2, or 1. Otherwise, when the
overall implication is equal to 0, there is no clear
implication between the two words and the
verdict is “Different”. Note that the distance
value between two words does not impact the
implication value or the verdict. The distance is
returned by the algorithm as an extra measure and
only to indicate how much two words are close to
each other’s diacritics.

Figure 3.1 Implication Example

* Due to the IRA algorithm’s full description being slightly lengthy,

the full details of the IRA algorithm are presented and diagrammed
in http://www.jarrar.info/publications/JZR16_IRA.pdf

http://www.jarrar.info/publications/JZR16_IRA.pdf

6

3.2 Special Cases

In this subsection we specify the special cases
that our algorithm fine-tune to increase the
accuracy of the results. We learned of these
special cases and how to handle them through
intensive manual comparisons and investigations
between similar words in our dataset. These
special cases are those of: diacritics on the last
letter of a word being compared, the hamza, the
shadda, and the sokoon.

Diacritics on the last letter of a word are a special
case, as differences in diacritization do not
change the meaning of the word. Considering
this, the algorithm neglects the diacritics on the
last letter of the words being compared.
The case of the shadda is also special. We use
different weights for calculating word distance
depending on the position of shadda in a word.
When on the first letter of a word, the distance of
a pair including the shadda is 4 if the diacritics
are not the same, as people tend to ignore shadda
in the beginning of a word most the time. In the
case of shadda on any other letter in the middle of
a word, this distance increases to 15.
This distance changes because the shadda plays a
much larger role when found in the middle of the
word, as opposed to the beginning. When on the
first letter of a word, it does not singlehandedly
determine whether two words are the same,
whereas it can certainly determine whether two
words are the same or not when found in the
middle of a word.
The case of the hamza is similar to that of the
shadda. When found atop the first letter of a
word, it is considered a diacritic, rather than a
letter. As found in the case of the shadda, when
the hamza is on the first letter of a word, the
distance of the diacritic pair is 4 if the diacritics
are not the same. In all other cases, the hamza is
considered a letter and treated as such. In other
words, the hamza is treated as and considered a
letter only when it appears after the first letter in
a word.
The sokoon is a peculiar case. This is because it
carries no sound. Because of this, it is usually
neglected in writing, where a letter that is not
diacritized is usually taken as a letter diacritized
with a sokoon. As a result, in the Diacritic Map,
the sokoon has a weight of 0 when alone and not
compared to another diacritic. Otherwise, the
weight differs depending on the other diacritic.

As stated earlier, our algorithm is always sound
over all the dictionary words it covers. We
established soundness by iterating few times over
the data set and refining for the non-deterministic
results after each iteration. The refinement was
based on input from a linguistic expert who
carefully evaluated whether all critical cases are
valid results, and what the correct result should
have been. The refinement included changes to
distance map entries and modifications of the
special cases.
The linguistic rules implemented in IRA also play
a vital role in determining the weights within the
Diacritic Map. Especially in the cases of the
shadda and hamza, the heavy weights of the
diacritics were largely influenced by the
linguistic properties these diacritics have.
As will be discussed in the evaluation section, and
in the use case section, the IRA algorithm is
100% sound, and 100% complete w.r.t. to the
used dataset that makes it fairly comprehensive.
We used the algorithm to match between Arabic
verbs in the ALMOR’s dataset and 37 other
lexicons. These lexicons represent different
levels of diacritization, ranging from fully
diacritized to non-diacritized words.

4 The MSA Algorithm

The MSA algorithm takes two Arabic words w1
and w2 and returns a score between 0 and 1 that
denotes how much w1 can morphologically
subsume w2. Before presenting the how the
algorithm works we must define a few notions.

Definition (Morpheme) A morpheme is the
smallest unit of morphological structure of a
given word. For Arabic, a morpheme is either an
affix or a stem. The affix is either a prefix or a
suffix. The stem could be a root or an inflection of
the root. A word is the concatenation of
connecting prefix, stem and suffix morphemes
where the prefix and the suffix could be empty
strings. Morpheme connectivity is a predefined
relation. For example, the prefix ََيـ ya connects to
the stem لعب l’b (play) to form the word يلعب
yal’b (is playing). Each morpheme is associated
with morphological features such as part of
speech (POS), transliteration, lemma and gloss.
Definition (Morphological analysis) The
morphological analysis of a given word w is the
set of all possible morpheme concatenations that

 7

form w. A word may have more than one
morphological solution and one solution may
have more than one set of features associated with
it. Table 4.1 illustrates three different solutions
for the word أحمدهم (Ahmdhm). The first solution
differs than the other two in diacritics, morpheme
segmentation and translation. The other two agree
in diacritics and morpheme segmentation
however, they differ in meaning.

Translation Suffix Stem Prefix

Did he praise them? aAhamidahom أ حَمِد هم

Their Ahmad aAhmadahom أحَْمَد هم

The best of them aAhmadahom أحَْمَد هم

Table 4.1 Three morphological solutions for أحمدهم

Definition (Morphology subsume relation) We
say word w1 morphologically subsumes word w2
if the morphological analysis of w1 returns a set
of solutions including the set of solutions returned
by the morphological analysis of w2. For
example, the words أحمدهم without diacritics, or
with one fatha on the first letter, morphologically
subsumes أحََمِدهَم and أحَْمَدهَم.

Definition (Morphology distance metric) The
morphological distance metric between two
words w1 and w2 measures how much w1 can
morphologically disambiguate w2. If w1 and w2

fully match in discretized and non-discretized
characters, then the distance is 0; which denotes
similarity. If w1 and w2 have different non-
diacritic characters, then the metric is 1; which is
the maximum distance and the words are deemed
different. In case the words have the same non-
discretized characters, the metric is calculated as
1 − |𝑀2 − 𝑀1 | ⁄ |𝑀2 | where M1 and M2 are
the sets of morphological solutions of w1 and w2
respectively, and |M| denotes the cardinality of
M. Intuitively, the distance is a ratio measure of
how many solutions of M2 can be eliminated by
the diacritics of M1.

4.1 Description of MSA Algorithm

As explained earlier, this algorithm takes two
Arabic words w1 and w2 and returns a score that
denotes how much w1 can morphologically
subsume w2. The algorithm (See MSAMetric in
Figure 4.1) makes use first of a diacritic
consistency algorithm isDiacriticConsistent
shown in Figure 4.2.

Algorithm isDiacriticConsistent takes the two
words and makes sure the sequence of non-

diacritic characters is an exact match and the
partial diacritics included in the two words are
consistent. Two diacritics are considered
consistent if they are not conflicting diacritics.
For example, consider the Arabic word شاهد with
two possible full diacritizations شَاْهَد (Shahad)
watched and شَاْهِد (Shahid) witness. The partially
diacritized words دشَاه and شاهِد are diacritic
consistent as there is no conflict in diacritic
assignment between them. However, the partially
diacrized words شاهَد and شاهِد are not diacritic
consistent since the fatha and the kasra on the
third letter are conflicting.
If isDiacriticConsistent returned false, the MSA
algorithm reports that the two words are distinct
by returning a score of 1. Otherwise, the MSA
algorithm uses an existing morphological
analyser [22] to compute the morphological
solutions M1 and M2 of w1 and w2, respectively.
It also computes M, the morphological solutions
of w, the non-diacriticized form of both w1 and
w2. The MSA computes M1Minus, the
complement of M1 in M, or intuitively the
solutions that are eliminated due to the diacritics
present in w1. Then, the algorithm computes M12
by subtraction M1Minus from M2. Intuitively,
this is the set of solutions that would have been
eliminated from M2 by the diacritics of w1. The
metric finally computes and returns the ratio of
the eliminated solutions to the solutions of w2.
Consider the illustrative example in Table 4.2.
The entries in Table 4.2 show five different
morphological solutions (|M| = 5) of the non-
vocalized Arabic word بن (w). The same word
with a kasra on the first letter بِن (w1) has four
solutions (|M1| = 4). The same word with a
shadda on the second letter َّبن (w2) has two
solutions (|M2| = 2). The set M1Minus has only
one element ُّبن. The set M12 eliminates ُّبن and
has consequently one solution ِّبن. Intuitively,
since w1 and w2 are diacritic consisting and have
no conflicting diacritics, the kasra on w1 implies
half the solutions of w2 while the shadda of w2
implies one fourth the solutions of w1.

 Transliteration Semantics POS

 bun~ Coffee NOUN بنَُّ

 bin/ben Name of a person بِن

(like Benjamin)

NOUN_PROP

 bin Son Noun بِن

 bin+na They (female بِنََّ

plural) appear

VERB_PERFECT+

PVSUFF_SUBJ:3F

 bi+n with Noon (name بِن

of a person)

PREP+NOUN_PR

OP

Table 4.2: Morphological solutions for بن

8

Double MSAMetric (Word w1 , Word w2)
 if (isDiacriticConsistent(w1, w2) == False)
 return 1;
 // both w1 and w2 are consistent w is w1 and w2
 //without diacritics
 Word w = removeDiacritics(w1);
 // compute the morphological solutions
 Solutions M = analyser(w);
 Solutions M1 = analyser(w1);
 Solutions M2 = analyser (w2);
 // M1Minus are the solutions that w1 diacritics
 // eliminated from M to form M1
 Solutions M1Minus = M – M1;
 // M12 are the solutions w1 diacritics (that are not in
 // conflict with w2) would have eliminated from w2
 Solutions M12 = M2 – M1minus;
return 1 – M12.size / M2.size;

Figure 4.1 MSAMetric Algorithm

bool isDiacriticConsistent(Word w1 , Word w2)
 int i1 =0, i2 =0;
 Diacritics d1, d2 ;
 while (i1 < w1.size && i2 < w2.size)
 if (!equals(w1[i1], w2[i2]))
 return false;
 i1 ++; i2 ++;
 d1.clear(); d2.clear();
 while (i1 < w1.size && isDiacritic(w1[i1]))
 d1.add(w1[i1]);
 i1 ++;
 endwhile // traverse w1 till next non-diacritic
 while (i2 < w2.size && isDiacritic(w2[i2]))
 d2.add(w2[i2]);
 i2 ++;
 endwhile // traverse w2 till next non-diacritic
 if (!isConsistent(d1 ,d2))
 return false;
 endwhile //traverse all of w1 and w2
return (i1 == w1.size && i2 == w2.size);

Figure 4.2 isDiacriticConsistent Algorithm

5 Evaluation and Discussion

This section presents the evaluation of both, the
IRA and MSA algorithms, whether they are
sound and complete, which was experimented
over a large dataset of about 36K pairs of words.
First, we define the notion of soundness and
completeness, then we present our dataset, and
discuss the results.

Definition (Soundness) As known in logic, we
define the soundness of our algorithms as whether
the results of the algorithm are correct or not.
That is, if the algorithm judges two words to be
same, or to be different, and this answer is always
correct then the algorithm is called sound. As will
be described later, our matching algorithms are
both sound.
Definition (Completeness) As is also known in
logic, we define the completeness of our
algorithms as whether the algorithm is always

able to judge whether two words to be same or
different. If so, then the algorithm is called
complete. As will be described later, our
matching algorithm is not complete. However,
our experiment below demonstrates that it
provides 97% ground coverage.

5.1 Experiment Setup and preparation.

To evaluate the soundness and completeness of
the algorithms we need to prepare a large dataset
of pairs of words, run both algorithms and
evaluate their results. To do this, we have
collected 16,408 distinct Arabic verb words
extracted from 38 different dictionaries.
Afterwards, we used ALMOR [22] to retrieve
possible matches of the collected 16,408 words.
The retrieved matching words by ALMOR
generated 35,203 pairs to compare.

The dictionaries we collected are at different
levels of diacritization. For instance, the Al-
Maany, Al-Waseet, Al-Ramooz, and the
Dictionary of Scientific, Technical and
Engineering Terms are each filled with highly
diacritized verbs. Dictionaries of medium-level
diacritization included, for example, the
Biological Lexicon of Biology and Agricultural
Sciences, the Dictionary of Economic Terms, and
the Dictionary of Statistics. Dictionaries
providing no diacritics on their words include the
Hydrology Glossary, the Lexicon of Chemicals
and Pharmaceuticals, the Lexicon of Education
and Psychology, and the Historical and
Geological Lexicon. A high level of diacritization
entails that all or most diacritics of a word are
written on the word. A medium level of
diacritization provides a word with few diacritics
present on the word. Selecting dictionaries with
different levels of diacritization is important for
our experiment as this provides a granular scope
of the performance and extent of the capabilities
of our algorithm.

The collected verb words were run through the
ALMOR Arabic word analyser using the SAMA
3.0 database. ALMOR retrieved highly
diacritized words that were similar (in
appearance and spelling) to the input words. For
each input word (of the 16,408 words), ALMOR
returned a fully discretized that is possibly the
same word as the input word. That is, the output
of this process is a set of pairs where the first
word that is partially discretized, and the second

 9

word, from ALMOR, is fully discretized. In this
process, after giving ALMOR our 16,408 words,
it produced 35,203 distinct pairs of words. A
sample of the dictionaries and the amount of pairs
that we were able to retrieve from each dictionary
is presented in Error! Reference source not
found..

The 35,203 pairs of words were input to our
both matching algorithms to find whether each
pair is equal or not. The results then given to a
linguist to manually verify the algorithms’
decisions.

 Dictionary Diacritization

Level

Words

Used

Word Pairs

Generated

Al-Ramooz High 8,734 19,296

Al-Waseet High 8,033 17,721

Al-Ma`any High 4,351 9,750

Al-Mustalahat High 2,263 4,527

Pharmaceutical Dictionary None 572 1,211

Nubian Dictionary None 561 1,175

Philosophical Dictionary None 133 307

Statistical Dictionary Medium 45 79

Table 5.1 Sample of the dictionaries experimented on

5.2 Results and Discussion

After running the IRA algorithm, we found that
it was able to judge all of 35,203 word pairs
correctly. That is, the experiment yielded a
success rate of 100% in terms of reaching a
conclusive result. These results are also
confirmed not only through the manual
evaluation by an expert linguist, but also by the
second MSA algorithm, as will be explained later.
It is worth noting that the manual evaluation
happened in two iterations. During the first
iteration, the IRA was able to only correctly judge
97.6% of pairs, but then we learned and identified
some special cases (the cases of Shadda and
Hamza at the first letter of a word, discussed in
section 3.2) and fine-tuned the IRA algorithm
accordingly. As a result, we claim that the IRA
algorithm is sound.

Although the IRA was able to correctly judge
100% the 35,203 word pairs, claiming that it is
complete is a tricky case. This is because we
cannot be absolutely sure, by nature of this
problem, whether there might be any existing
case where the IRA cannot judge. However, since
we have evaluated the algorithm on a large
number of dictionary entries that cover lots of the
ground, we claim that it is fairly comprehensive.
That is, we claim that IRA was complete for the

given dataset, which itself represent a vast
majority of language entries.

In case the IRA need to be used in extreme or
very sensitive applications -for example in case
one likes to consider two words with Hamza or
Shadda difference to be different words- then we
recommend to us the distance value computed by
the algorithm. In case the distance value is 15 or
more, it indicates that that the two words have
Hamza or Shadda differences. However, based on
comparing the 35k word pairs, we believe that
Hamza or Shadda on the first letters do not have
any impact on the decision.

After running the MSA algorithm on the
35,203 word pairs that we verified manually by
an expet linguist, the MSA was able judge 95%
of the pairs. The other 5% could not be judged
because ALMOR did not return any solution.
That is, the comprehensiveness of the MSA
depends on the morphological analyser used and
the comprehensiveness of its database, which is
95% in our case.

The soundness of MSA was 93%. This was
calculated by comparing the judgments of the
MSA with the judgments of the IRA that we
verified manually, and in 93% of cases both
algorithms agree.

Based on the above results, we would like to
remark the IRA algorithm is computationally
lighter than the MSA algorithm and does not
require computation of morphological features to
produce a highly accurate comparison result. This
is evident in the high level of agreement between
both algorithms. Therefore, it is advisable that
Arabic text processing, including NLP
applications that do not require morphological
preprocessing, use the IRA algorithm instead of
the MSA algorithm for word-to-word
comparisons. Examples of such applications are
those needing either word frequency or word
colocation computations.

The MSA algorithm should be used in case
morphological solutions and features are anyway
needed and computed in the NLP application.
Example for such applications are POS tagging
and syntactic analysis.

6 Use Case (Lemma Disambiguation)

This section presents a use case to demonstrate
the utility of our algorithm. In our VerbMesh
project, which aimed to build a large graph of

10

Arabic verbs, we needed to link verbs found in
hundreds of Arabic dictionaries that we currently
possess at Birzeit University. Basic string-
matching techniques alone do not suffice to
match and link two verbs, as verbs with same
spelling but different linguistic properties lead to
incorrect and undesired matching. Instead, we
used lemmas to match between verbs. Verbs
having the same lemma are considered same
entries. In other words, same verbs across
dictionaries are linked with their lemmas,
although they might be diacritized differently.

To assign a lemma to each verb in every
dictionary, we used the ALMOR morphological
analyser, utilizing the SAMA 3.0 database. The
major challenge we faced in this approach was
that ALMOR returned too many lemmas for each
dictionary entry. For example, ALMOR returns
13 different lemmas for the entry ََنَحُل, which are
 , حالَُ , نَحُلَُ , حَلوَُُ , حَلَى , حَلِيََ , حَلَِّ , نَحِلََ ,نَحَلَُ , نَحَل ََ}
 An undiacritized word can .{حَلَّى, أحََلَّ , أحَال , حَلَ
bring an extra level of ambiguity. An example of
such a case can be seen when inputting the word
 into ALMOR, where the resulting lemmas سلب
are {ََُسَلِبََ ,سَلب}. This is because ALMOR takes a
word as input, segments it, and uses the stem to
find other words with a similar stem and their
lemmas. As a result, multiple lemmas are
returned for each ALMOR’s word input.
Therefore, a further disambiguation of lemmas
was needed, which is where our algorithm plays
an essential role.

By using ourَ IRA matching algorithm, after
ALMOR’s lemmatization, we were able to filter
and disambiguate the lemmas provided by
ALMOR, and keep only the correct lemmas.
Taking each verb-lemma pair as input, our
algorithms decided whether each pair had an
implication relationship. For instance, after
lemmatizing the 8,731 verbs found in Al-Waseet
(No.3 in Table 6.1), 17,721 word pairs were
returned by ALMOR; among them incorrect
lemmas. After using our matching algorithm to
filter out those the incorrect lemmas (i.e., with
different incompatible diacritics), we were able to
reduce the amount of matching pairs to 4,766
correctly matched pairs. In the case of the Al-
Ramooz dictionary (No. 2), which includes 9,866
verbs, ALMOR returned 19,296 different pairs of
words. After running the resulting pairs through
the IRA algorithm, we were left with 4,575 pairs
considered correctly matched.

No Dictionary Verbs
Initial

Pairs

Correct

Pairs

 2,504 9,750 4,425 قاموسَالمعاني 1

 4,575 19,296 9,866 معجمَالراموزَالوسيطَللأفعال 2

 4,766 17,721 8,731 المعجمَالوسيطَفيَتصريفَالافعال 3

 915 4,523 7,021 قاموسَالمصطلحاتَالعلميةَوالفنيةَوالهندسية 4

 299 1,175 1,118 القاموسَالنوبي 5

 316 1,211 1,101 قاموسَالصيدلة 6

 63 245 244 قاموسَومصطلحاتَاليونسيف 7

 68 271 254 قاموسَالخدمةَالاجتماعيةَالطبية 8

 35 213 276 القاموسَالرياضي 9

Table 6.1 Matching Algorithm Lemma Reduction

Table 6.1 provides a sample of the dictionaries we
matched, which provide an evidence of not only
the algorithm’s success, but also of the added
utility when used on top of other programs, such
as morphological analysers. On average, the
amount of word pairs originally proposed by
ALMOR were reduced by 74.8% using the IRA
algorithm. The remaining 25.2% of the word
pairs are all pairs that are certain matches. This
ensures the words being linked are, with
certainty, the same words under the same lexeme.
That is, the matching algorithm can be used with
ALMOR or MADA in order to provide further
filtration of the analysis and bring more desired
results.

7 Conclusion and future work

In this paper, we presented two algorithms that
compare a pair of Arabic words with the same
non-diacritic characters but with different
diacritics. The IRA algorithms encodes expert
knowledge in a set of expert rules and reports an
implication direction, an implication measure and
a matching verdict. The MSA algorithm
computes the morphological subsumption
relation of one word with respect to the other. We
evaluated both algorithms and experiments show
that both algorithms are sound and agree on 93%
on their recall intersection.

Future plans for the presented algorithms
include further testing with an even larger dataset
than the over 35,000 pairs used, and using word
forms such as nouns and adjectives. Using larger
data sets for testing will allow for even more
granular fine-tuning of the IRA algorithm’s
criteria for word-matching. Also planned is the
expansion of the algorithms to include taking
multi-word phrases as input and returning sets of
words considered equal.

Acknowledgement

 11

This research was partially funded by Birzeit
University (VerbMesh project) and partially by
Google’s Faculty Research Award to Prof. Jarrar.
The authors are also very thankful to Mohammad
Dwaikat, Faeq Rimawi and Reema Taha for
helping in the implementation and in the manual
evaluation of the results.

8 References

[1] M. A. Attia, “Handling Arabic morphological

and syntactic ambiguity within the lfg

framework with a view to machine

translation,” Ph.D. dissertation, University

of Manchester, 2008.

[2] G. A. Kiraz, “Arabic computational

morphology in the west,” Conference and

Exhibition on Multilingual Computing,

1998, pp. 101–110.

[3] T. Buckwalter, “Buckwalter Arabic

morphological analyser version 1.0,” LDC

catalog number LDC2002L49, Tech. Rep.

[4] M. Boujelben, C. Aloulou, and L. Hadrich

Belguith, “Toward a robust

detection/correction system for the

agreement errors in non-voweled Arabic

texts,” in Proc. ACIT 2008.

[5] F. Debili, H. Achour, and E. Souissi, “De

letiquetage grammatical a la voyellation

automatique de larabe,” Tech. Rep. 2002.

[6] N. Chaaben Kammoun, L. Hadrich Belguith,

and A. Ben Hamadou, “The morph2 new

version: A robust morphological analyser

for Arabic texts,” ser. JADT 2010, June.

 [8] K. R. Beesley, “Finite-state morphological

analysis and generation of Arabic at xerox

research: Status and plans,” in ALP

Workshop , France, 2001, pp. 1–8.

[9] S. Kulick, A. Bies, and M. Maamouri,

“Consistent and flexible integration of

morphological annotation in the Arabic

treebank,” in Proc. LREC’2010, Malta,

[10] D. Vergyri and K. Kirchhoff, “Automatic

diacritization of Arabic for acoustic

modeling in speech recognition,” in Proc. of

CAASL, ACL, 2004, pp. 66–73

 [12] A. M. Seraye, “The role of short vowels and

context in the reading of Arabic,

comprehension and word recognition of

highly skilled readers,” Ph.D. Thesis 2004.

[13] M. Khorsheed, “An HMM-based system to

diacritize Arabic text,” SEA, V. 5, 2013.

[14] A. Said, M. El-Sharqwi, A. Chalabi, and E.

Kamal, “A hybrid approach for Arabic

diacritization,” in NLPIS Systems.

Springer, 2013, pp. 53–64.

[15] A. M. Hattab and A. K. Hussain, “Hybrid

statistical and morphosyntactical Arabic

language diacritizing system.” Journal of

Academic Research, vol. 4, no. 4, 2012.

[16] A. O. Bahanshal and H. S. Al-Khalifa, “A

first approach to the evaluation of Arabic

diacritization systems,” (ICDIM), IEEE,

2012, pp. 155–158.

[17] S. Alqrainy, H. AlSerhan, and A. Ayesh,

“Pattern-based algorithm for part-of-speech

tagging Arabic text,” ICCES 2008. pp. 119–

124.

[18] Arabic Morphological Tagging,

Diacritization, and Lemmatization Using

Lexeme Models and Feature Ranking.

Columbus, Ohio: ACL, 06/2008.

[20] N. Habash, O. Rambow, and R. Roth,

“Mada+tokan: A toolkit for Arabic

tokenization, diacritization, morphological

disambiguation, pos tagging, stemming and

lemmatization,” in Proc. ICALRT,

MEDAR, 2009.

[21] M. Rashwan, M. Al-Badrashiny, M. Attia, S.

Abdou, and A. Rafea,“A stochastic Arabic

diacritizer based on a hybrid of factorized

and unfactorized textual features,” IEEE

TASLP, vol. 19, no. 1, pp. 166–175, 2011.

[22] N. Habash, "Arabic Morphological

Representations for Machine Translation",

book chapter, Vol. 38, pp 263-285

