
For Peer Review

Global and Local Deadlock Freedom in BIP

Journal: Transactions on Software Engineering and Methodology

Manuscript ID Draft

Manuscript Type: Journal-First Paper

Date Submitted by the Author: n/a

Complete List of Authors: Attie, Paul; American University of Beirut, Computer Science
Bensalem, Saddek; VERIMAG
Bozga, Marius; Verimag, DCS
Jaber, Mohamad; American University of Beirut
Sifakis, Joseph; Ecole Polytechnique Federale de Lausanne
Zaraket, Fadi; American University of Beirut, ECE

Computing Classification
Systems:

Theory of computation~Program verification, Software and its
engineering~Deadlocks, Software and its engineering~Model checking,
Software and its engineering~Formal software verification, Software and
its engineering~State systems

Transactions on Software Engineering and Methodology

For Peer Review

October 6, 2016

Prof. David S. Rosenblum
Editor-in-Chief
ACM Transactions on Software Engineering and Methodology

Dear Professor Rosenblum,

I would like to submit our paper “Global and Local Deadlock Freedom in BIP”, by Paul C Attie,
Saddek Bensalem, Marius Bozga, Mohamad Jaber, Joseph Sifakis, and Fadi A Zaraket, for consid-
eration for publication in ACM TOSEM. The paper presents a sound and complete criterion for
deadlock-freedom in concurrent programs with local non-determinism. Completeness is obtained
by treating the wait-for graph as an AND-OR graph. In the positive case of deadlock freedom, the
criterion can often be verified quickly, given a fast method for verifying deadlock-freedom.

I would also like to submit this paper as a “journal first” submission. A very preliminary version
of this paper appeared in the 2013 IFIP Joint International Conference on Formal Techniques for
Distributed Systems (33rd FORTE / 15th FMOODS), with the title “An Abstract Framework
for Deadlock Prevention in BIP”. The conference version gives a restricted “linear” version of the
criterion, which is not complete, and which fails in cases where the complete AND-OR criterion
succeeds. We also provide experiments that are new and different from the conference version, and
which, among other results, give an example where the linear criterion fails while the AND-OR
criterion succeeds. Hence the contributions of this paper are different, and extend the conference
paper in new ways.

Sincerely,

Paul C Attie
Associate Professor
American University of Beirut
Department of Computer Science
Beirut 1107 2020, Lebanon

pa07@aub.edu.lb

http://www.cs.aub.edu.lb/pa07/

Page 1 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A

Global and Local Deadlock Freedom in BIP1

PAUL C ATTIE, Department of Computer Science, American University of Beirut, Beirut, Lebanon

SADDEK BENSALEM, UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France

MARIUS BOZGA, UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France

MOHAMAD JABER, Department of Computer Science, American University of Beirut, Beirut, Lebanon

JOSEPH SIFAKIS, Rigorous System Design Laboratory, EPFL, Lausanne, Switzerland

FADI A ZARAKET, Department of Electrical and Computer Engineering, American University of

Beirut, Beirut, Lebanon

We present a criterion for checking local and global deadlock freedom of finite state systems expressed in
BIP: a component-based framework for the construction of complex distributed systems. Our criterion is
evaluated by model-checking a set of subsystems of the overall large system. If satisfied in small subsys-
tems, it implies deadlock-freedom of the overall system. If not satisfied, then we re-evaluate over larger
subsystems, which improves the accuracy of the check. When the subsystem being checked becomes the en-
tire system, our criterion becomes complete for deadlock-freedom. Hence our criterion can only fail to decide
deadlock-freedom because of computational limitations: state-space explosion sets in when the subsystems
being checked become too large. Our method thus combines the possibility of fast response together with
theoretical completeness. Other criteria for deadlock-freedom, in contrast, are incomplete in principle, and
so may fail to decide deadlock-freedom even if unlimited computational resources are available. Also, our
criterion certifies freedom from local deadlock, in which a subsystem is deadlocked while the rest of the sys-
tem executes. We present experimental results for dining philosophers and for a multi token-based resource
allocation system, which subsumes several data arbiters and schedulers, including Milner’s token based
scheduler.

CCS Concepts: •Theory of computation → Program verification; •Software and its engineering →

Deadlocks; Model checking; Formal software verification; State systems; Synchronization;

Additional Key Words and Phrases: Nondeterminism, Completeness

ACM Reference Format:

Paul C. Attie, Saddek Bensalem, Marius Bozga, Mohamad Jaber, Joseph Sifakis, Fadi A Zaraket, 2016.
Global and Local Deadlock Freedom in BIP. ACM Trans. Softw. Eng. Methodol. V, N, Article A (January
YYYY), 43 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Deadlock freedom is a crucial property of concurrent and distributed systems. With in-
creasing system complexity, the challenge of assuring deadlock freedom and other cor-

Author’s addresses: Paul C. Attie and Mohamad Jaber, Department of Computer Science, American Univer-
sity of Beirut, Beirut, Lebanon, Saddek Bensalem and Marius Bozga, VERIMAG, Grenoble, France, Joseph
Sifakis, EPFL, Lausanne, Switzerland, Fadi A Zaraket, Department of Electrical and Computer Engineer-
ing, American University of Beirut, Beirut, Lebanon.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1049-331X/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 2 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:2 P.C. Attie et al.

rectness properties becomes even greater. In contrast to the alternatives of (1) deadlock
detection and recovery, and (2) deadlock avoidance, we advocate deadlock prevention:
design the system so that deadlocks do not occur.

Deciding deadlock freedom of finite-state concurrent programs is PSPACE-
complete, in general [Papadimitriou 1994, chapter 19]. To achieve tractability, we
present a criterion for deadlock-freedom that is evaluated by model-checking a set
of subsystems of the overall system. If the subsystems are small, the criterion can be
checked quickly, and is sound (if true, it implies deadlock-freedom) but not complete
(if false, then it yields no information about deadlock). If the subsystems are larger,
then our criterion becomes more “accurate”: roughly speaking, there is less possibil-
ity for the criterion to evaluate to false when the system is actually deadlock-free. In
the limit, when the set of subsystems includes the entire system itself, our criterion
is complete, so that evaluation to false implies that the system is actually deadlock-
prone. Hence, our criterion only fails to resolve the question of deadlock-freedom when
it’s evaluation exhausts available computational resources, because the subsystems
being checked have become too large, and state-explosion has set in.

Our method thus combines the possibility of fast response together with theoretical
completeness. All deadlock-freedom checks given in the literature to date are, to our
knowledge, incomplete in principle, and so remain incomplete even if unlimited com-
putational resources are available. Hence these criteria could fail to resolve deadlock
freedom for theoretical reasons, as well as for lack of computational resources. The
reason for this incompleteness is that existing criteria all characterize deadlock by the
occurrence of a wait-for cycle, e.g., as stated by Antonino et al. [2016], discussion of
related work:

All these methods were designed, to some extent, around the principle that
under reasonable assumptions about the system, any deadlock state would
contain a proper cycle of un-granted requests.

In a model of concurrency which includes choice of actions (e.g., BIP, CSP, I/O au-
tomata, CCS), a wait-for cycle is an incomplete characterization of deadlock, since a
process can be in a wait-for cycle, but not deadlocked, due to having a choice of inter-
action with another process not in the wait-for cycle (see Figure 5).

Our method, in contrast, characterizes deadlock by the occurrence of a supercycle
[Attie and Emerson 1998; Attie and Chockler 2005], which, very roughly, is the AND-
OR analogue of a wait-for cycle: a subset of processes constitutes a supercycle SC iff
every possible action of every process in SC is blocked by another process in SC . We
show that supercycles are a sound and complete characterization of deadlock: a system
is deadlock-prone iff a supercycle can arise in some reachable state. We then present
our criterion, which prevents the occurrence of supercycles in reachable states of the
system. We first present a “global” version of our criterion, which is both sound and
complete w.r.t. absence of supercycles, and then a “local” version, which is sound w.r.t.
absence of supercycles, and can be evaluated over small subsystems.

In addition our criterion guarantees freedom from local (and therefore global) dead-
lock. A local deadlock occurs when a subsystem is deadlocked while the rest of the sys-
tem can execute. Other criteria in the literature [Antonino et al. 2016; Martin 1996;
Roscoe and Dathi 1987; Bensalem et al. 2011; Brookes and Roscoe 1991; Martens and
Majster-Cederbaum 2012; Gössler and Sifakis 2003; Aldini and Bernardo 2003] guar-
antee only global deadlock freedom.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 3 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:3

This paper significantly extends a preliminary conference version [Attie et al. 2013]
as follows: (1) we present an “AND-OR” criterion for deadlock-freedom, which exploits
the AND-OR structure of supercycles, and is therefore complete for deadlock-freedom
in the limit, while our preliminary work [Attie et al. 2013] gives a “linear” criterion,
which is a special case in which the AND-OR structure is ignored, and (2) experimen-
tal results show that the new criterion is more efficient in practice, and also succeeds
in cases where the linear criterion fails. We therefore have the best of both worlds:
early stopping, and therefore efficient verification of deadlock-freedom, in many cases,
together with theoretical completeness. Our criterion is, to the best of our knowledge,
the first criterion that is sound and complete for local and global deadlock-freedom in
concurrent programs with nondeterministic local choice, i.e., a process can nondeter-
ministically choose among enabled actions.

We present experimental results for dining philosophers and for a multi token-
based resource allocation system, which generalizes Milner’s token based sched-
uler [Milner 1989]. These show that our method compares favorably with existing
approaches.

Section 2 presents BIP. Section 3 characterizes local and global deadlocks as the oc-
currence of a pattern of wait-for edges called a supercycle, and presents some structural
properties of supercycles. Section 4 considers how a supercyle can be formed, and an-
alyzes the consequences of supercycle formation. Section 5 presents global conditions
for the prevention of the formation of supercycles. Global means that these conditions
are evaluated in the entire system. Section 6 presents local conditions for the preven-
tion of the formation of supercycles. These can be evaluated in (small) subsystems of
the overall system, and are obtained by “projecting” the global conditions onto a sub-
system. Section 7 presents the main soundness and completeness results of the paper,
and gives the implication relation among our various conditions for deadlock-freedom.
Section 8 gives algorithms to evaluate the local conditions, and presents experimental
evaluation. Section 9 discusses related work, further work, and concludes.

2. BIP — BEHAVIOR INTERACTION PRIORITY

BIP is a component framework for constructing systems by superposing three layers of
modeling: Behavior, Interaction, and Priority. A technical treatment of priority is be-
yond the scope of this paper. Adding priorities never introduces a deadlock, since prior-
ity enforces a choice between possible transitions from a state, and deadlock-freedom
means that there is at least one transition from every (reachable) state. Hence if a BIP
system without priorities is deadlock-free, then the same system with priorities added
will also be deadlock-free.

Definition 2.1 (Atomic Component) An atomic component Bi is a labeled transition
system represented by a triple (Qi, Pi,→i) where Qi is a set of states, Pi is a set of
communication ports, and→i⊆ Qi×Pi×Qi is a set of possible transitions, each labeled
by some port.

For states si, ti ∈ Qi and port pi ∈ Pi, write si
pi
→i ti, iff (si, pi, ti) ∈→i. When pi

is irrelevant, write si →i ti. Similarly, si
pi
→i means that there exists ti ∈ Qi such

that si
pi
→i ti. In this case, pi is enabled in state si. Ports are used for communication

between different components, as discussed below.

In practice, we describe the transition system using some syntax, e.g., involving
variables. We abstract away from issues of syntactic description since we are only

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 4 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:4 P.C. Attie et al.

Fork F

Philosopher P

release

get

e h

release get

fur ul

user use l

free lfreer

user use l

freer
free l

(a) Philosopher P and fork F atomic
components.

ge
t

user

use l

re
le
a
se

release

get

get

release

relea
se

get

use l

free l

user
freer

P0

P3

P2

P1

F0 F1

F2F3

use l
free l

freer
user

use l

user

free l

freer

freer

free l

(b) Dining philosophers composite compo-
nent with four philosophers.

Fig. 1. Dining philosophers.

interested in enablement of ports and actions. We assume that enablement of a port
depends only on the local state of a component. In particular, it cannot depend on the
state of other components. This is a restriction on BIP, and we defer to subsequent work
how to lift this restriction. So, we assume the existence of a predicate enbipi

that holds

in state si of component Bi iff port pi is enabled in si, i.e., si(enb
i
pi
) = true iff si

pi
→i.

Figure 1(a) shows atomic components for a philosopher P and a fork F in dining
philosophers. A philosopher P that is hungry (in state h) can eat by executing get and
moving to state e (eating). From e, P releases its forks by executing release and moving
back to h. Adding the thinking state does not change the deadlock behaviour of the
system, since the thinking to hungry transition is internal to P , and so we omit it. A
fork F is taken by either: (1) the left philosopher (transition get l) and so moves to state
ul (used by left philosopher), or (2) the right philosopher (transition getr) and so moves
to state ur (used by right philosopher). From state ur (resp. ul), F is released by the
right philosopher (resp. left philosopher) and so moves back to state f (free).

Definition 2.2 (Interaction) For a given system built from a set of n atomic compo-
nents {Bi = (Qi, Pi,→i)}

n
i=1, we require that their respective sets of ports are pairwise

disjoint, i.e., for all i, j such that i, j ∈ {1..n}∧ i 6= j, we have Pi ∩Pj = ∅. An interaction
is a set of ports not containing two or more ports from the same component. That is, for
an interaction a we have a ⊆ P ∧ (∀ i ∈ {1..n} : |a ∩ Pi| ≤ 1), where P =

⋃n
i=1 Pi is the

set of all ports in the system. When we write a = {pi}i∈I , we assume that pi ∈ Pi for all
i ∈ I, where I ⊆ {1..n}.

Execution of an interaction a = {pi}i∈I involves all the components which have ports
in a. We denote by components(a) the set of atomic components participating in a, for-
mally: components(a) = {Bi | pi ∈ a}.

Definition 2.3 (Composite Component) A composite component (or simply compo-
nent) B , γ(B1, . . . ,Bn) is defined by a composition operator parameterized by a set of
interactions γ ⊆ 2P . B has a transition system (Q, γ,→), where Q = Q1 × · · · ×Qn and

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 5 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:5

→⊆ Q× γ ×Q is the least set of transitions satisfying the rule

a = {pi}i∈I ∈ γ ∀i ∈ I : si
pi
→i ti ∀i 6∈ I : si = ti

〈〈〈s1, . . . , sn〉〉〉
a
→ 〈〈〈t1, . . . , tn〉〉〉

This inference rule says that a composite component B = γ(B1, . . . ,Bn) can execute an
interaction a ∈ γ, iff for each port pi ∈ a, the corresponding atomic component Bi can
execute a transition labeled with pi; the states of components that do not participate in
the interaction stay unchanged. Figure 1(b) shows a composite component consisting
of four philosophers and the four forks between them. Each philosopher and its two
neighboring forks share two interactions: Get = {get , usel, user} in which the philoso-
pher obtains the forks, and Rel = {release, freel, freer} in which the philosopher releases
the forks.

Definition 2.4 (Interaction enablement) An atomic component Bi = (Qi, Pi,→i)

enables a port pi ∈ Pi in state si iff si
pi
→i. Bi enables interaction a in state si iff si

pi
→i,

where {pi} = Pi ∩ a is the port of Bi involved in a. That is, Bi enables a in state si iff Bi

enables port a ∩ Pi in state si.

Let enbipi
denotes the enablement condition for port pi in component Bi, that is, enbipi

holds iff si is the current state of Bi and si
pi
→i. Let enbi

a
denote the enablement condition

for interaction a in component Bi, that is, enbi
a
= enbipi

where {pi} = a ∩ Pi.

Let B = γ(B1, . . . ,Bn) be a composite component, and let s = 〈〈〈s1, . . . , sn〉〉〉 be a state
of B. Then B enables a in s iff every Bi ∈ components(a) enables a in si.

The definition of interaction enablement is a consequence of Definition 2.3. Interaction
a being enabled in state s means that executing a is one of the possible transitions that
can be taken from s.

To avoid pathological cases of deadlock due solely to a single component refusing to
enable any interaction at all, we assume that every component always enables at least
one interaction. Structurally, this means that there is no local state zero transitions,
and every port labeling a transition is part of at least one interaction.

Definition 2.5 (Local Enablement Assumption) For every component Bi =
(Qi, Pi,→i), the following holds. In every si ∈ Qi, Bi enables some interaction a.

Definition 2.6 (BIP System) Let B = γ(B1, . . . ,Bn) be a composite component with
transition system (Q, γ,→), and let Q0 ⊆ Q be a set of initial states. Then (B, Q0) is a
BIP system.

Figure 1(b) gives a BIP-system with philosophers initially in state h (hungry) and forks
initially in state f (free). To avoid tedious repetition, we fix, for the rest of the paper, an
arbitrary BIP-system (B, Q0), with B , γ(B1, . . . ,Bn), and transition system (Q, γ,→).

Definition 2.7 (Execution) Let (B, Q0) be a BIP system with transition system
(Q, γ,→). Let ρ = s0a1s1 . . . sj−1ajsj . . . be an alternating sequence of states of B and
interactions of B. Then ρ is an execution of (B, Q0) iff (1) s0 ∈ Q0, and (2) ∀ j > 0 :

sj−1
aj
→ sj .

Definition 2.8 (Reachable state, transition) A state or transition that occurs in
some execution is called reachable.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 6 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:6 P.C. Attie et al.

Definition 2.9 (State Projection) Let (B, Q0) be a BIP system where B =
γ(B1, . . . ,Bn) and let s = 〈〈〈s1, . . . , sn〉〉〉 be a state of (B,Q0). Let {Bi1 , . . . ,Bik} ⊆
{B1, . . . ,Bn}. Then s↾{Bi1 , . . . ,Bik} , 〈〈〈si1 , . . . , sik〉〉〉. For a single Bi, we write s↾Bi = si.
We extend state projection to sets of states element-wise.

Definition 2.10 (Subcomponent) Let B , γ(B1, . . . ,Bn) be a composite component,
and let {Bi1 , . . . ,Bik} be a subset of {B1, . . . ,Bn}. Let P ′ = Pi1 ∪ · · · ∪ Pik , i.e., the union
of the ports of {Bi1 , . . . ,Bik}. Then the subcomponent B′ of B based on {Bi1 , . . . ,Bik} is
as follows:

(1) γ′ , {a ∩ P ′ | a ∈ γ ∧ a ∩ P ′ 6= ∅}
(2) B′ , γ′(Bi1 , . . . ,Bik)

That is, γ′ consists of those interactions in γ that have at least one participant in
{Bi1 , . . . ,Bik}, and restricted to the participants in {Bi1 , . . . ,Bik}, i.e., participants not
in {Bi1 , . . . ,Bik} are removed.

We write s↾B′ to indicate state projection onto B′, and define s↾B′ , s↾{Bi1 , . . . ,Bik},
where Bi1 , . . . ,Bik are the atomic components in B′.

Definition 2.11 (Subsystem) Let (B, Q0) be a BIP system where B = γ(B1, . . . ,Bn),
and let {Bi1 , . . . ,Bik} be a subset of {B1, . . . ,Bn}. Then the subsystem (B′, Q′

0) of (B, Q0)
based on {Bi1 , . . . ,Bik} is as follows:

(1) B′ is the subcomponent of B based on {Bi1 , . . . ,Bik}
(2) Q′

0 = Q0↾{Bi1 , . . . ,Bik}

Definition 2.12 (Execution Projection) Let (B, Q0) be a BIP system where B =
γ(B1, . . . ,Bn), and let (B′, Q′

0), with B′ = γ′(Bi1 , . . . ,Bik) be the subsystem of (B, Q0)
based on {Bi1 , . . . ,Bik}. Let P ′ = Pi1 ∪ · · · ∪ Pik , i.e., P ′ is the set of ports of (B′, Q′

0). Let
ρ = s0a1s1 . . . sj−1ajsj . . . be an execution of (B, Q0). Then, ρ↾(B′, Q′

0), the projection of ρ
onto (B′, Q′

0), is the sequence resulting from:

(1) replacing each sj by sj↾{Bi1 , . . . ,Bik}, i.e., replacing each state by its projection onto
{Bi1 , . . . ,Bik}

(2) removing all ajsj where aj ∩ P ′ = ∅
(3) replacing each aj by aj ∩P

′, i.e., replacing each interaction by its projection onto the
port set P ′

Proposition 2.13 (Execution Projection) Let (B, Q0) be a BIP system where B =
γ(B1, . . . ,Bn), and let (B′, Q′

0), with B′ = γ′(Bi1 , . . . ,Bik) be the subsystem of (B, Q0)
based on {Bi1 , . . . ,Bik}. Let P ′ = Pi1∪· · ·∪Pik , i.e., the union of the ports of {Bi1 , . . . ,Bik}.
Let ρ = s0a1s1 . . . sj−1ajsj . . . be an execution of (B, Q0). Then, ρ↾(B′, Q′

0) is an execution
of (B′, Q′

0).

Proof. By Definitions 2.9, 2.11, and 2.12, we have ρ↾(B′, Q′

0) = s′0b1s
′

1b2s
′

2 . . . for some
s′0, b1s

′

1b2s
′

2 . . ., where s′j ∈ Q′ = Q↾{Bi1 , . . . ,Bik} for j ≥ 0. Also by Definitions 2.9,

2.11, and 2.12, we have s′0 ∈ Q′

0 = Q0↾{Bi1 , . . . ,Bik}, since s′0 = s0↾B′, and s0 ∈ Q0, by
Definition 2.7.

Consider an arbitrary step (s′j−1, bj , s
′

j) of ρ↾(B′, Q′

0). Since bjs
′

j was not removed in
Clause 2 of Definition 2.12, we have

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 7 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:7

(1) s′j = sℓ↾{Bi1 , . . . ,Bik} for some ℓ > 0 and such that aℓ ∩ P ′ 6= ∅
(2) bj = aℓ ∩ P ′

(3) s′j−1 = sm↾{Bi1 , . . . ,Bik} for the smallest m such that
m < ℓ and ∀m′ : m+ 1 ≤ m′ < ℓ : am′ ∩ P ′ = ∅

From (3) we have ∀m′ : m+ 1 ≤ m′ < ℓ : am′∩P ′ = ∅. So by Definitions 2.3 and 2.12, we
have sm↾{Bi1 , . . . ,Bik} = sℓ−1↾{Bi1 , . . . ,Bik}. From (3) we have s′j−1 = sm↾{Bi1 , . . . ,Bik}.

Hence s′j−1 = sℓ−1↾{Bi1 , . . . ,Bik}.

From sℓ−1
aℓ→ sℓ, aℓ ∩ P ′ 6= ∅, and Definition 2.3, we have sℓ−1↾{Bi1 , . . . ,Bik}

aℓ∩P ′

→
sℓ↾{Bi1 , . . . ,Bik}. s′j−1 = sℓ−1↾{Bi1 , . . . ,Bik} was established above. s′j =

sℓ↾{Bi1 , . . . ,Bik} is from (1). bj = aℓ ∩ P ′ is from (2). Hence we obtain s′j−1

bj
→ s′j , i.e.,

that s′j−1, bjs
′

j is a step of (B′, Q′

0).

Since (s′j−1, bj , s
′

j) was arbitrarily chosen, we conclude that every step of ρ↾(B′, Q′

0)
is a step of (B′, Q′

0). This establishes Clause (2) of Definition 2.7. The first state of
ρ↾(B′, Q′

0) is s′0, and s′0 ∈ Q′

0 was shown above, so we establish Clause (1) of Defini-
tion 2.7.

Since both clauses of Definition 2.7 are satisfied, we conclude that ρ↾(B′, Q′

0) is an
execution of (B′, Q′

0). ✷

COROLLARY 2.14. Let (B′, Q′

0) be a subsystem of (B, Q0), and let P ′ be the port set of
(B′, Q′

0). Let s be a reachable state of (B, Q0). Then s↾B′ is a reachable state of (B′, Q′

0).

Let s
a
→ t be a reachable transition of (B, Q0), and let a be an interaction of (B′, Q′

0).

Then s↾B′ a∩P ′

→ t↾B′ is a reachable transition of (B′, Q′

0).

Proof. Immediate corollary of Proposition 2.13. ✷

3. CHARACTERIZING DEADLOCK-FREEDOM

Definition 3.1 (Global Deadlock-freedom) A BIP-system (B, Q0) is free of global
deadlock iff, in every reachable state s of (B,Q0), some interaction a is enabled. For-

mally, ∀ s ∈ rstates(B, Q0), ∃ a : s
a
−→B .

Definition 3.2 (Local Deadlock-freedom) A BIP-system (B, Q0) is free of local
deadlock iff, for every subsystem (B′, Q′

0) of (B, Q0), and every reachable state s of (B, Q0),
(B′, Q′

0) has some interaction enabled in state s↾B′. Formally:
for every subsystem (B′, Q′

0) of (B, Q0):

∀ s ∈ rstates(B, Q0), ∃ a : s↾B′ a
−→B′ .

Proposition 3.7 states that the existence of a supercycle implies a local deadlock: all
components in the supercycle are blocked forever.

Proposition 3.8 states that the existence of a supercycle is necessary for a local
deadlock to occur: if a set of components, considered in isolation, are blocked, then
there exists a supercycle consisting of exactly those components, together with the
interactions that each component enables.

3.1. Wait-for graphs

The wait-for-graph for a state s is a directed bipartite and-or graph which contains
as nodes the atomic components B1, . . . ,Bn, and all the interactions γ. Edges in the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 8 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:8 P.C. Attie et al.

wait-for-graph are from a Bi to all the interactions that Bi enables (in s), and from an
interaction a to all the components that participate in a and which do not enable it (in
s).

Definition 3.3 (Wait-for-graph WB(s)) Let B = γ(B1, . . . ,Bn) be a BIP composite
component, and let s = 〈〈〈s1, . . . , sn〉〉〉 be an arbitrary state of B. The wait-for-graph WB(s)
of s is a directed bipartite and-or graph, where

1. the nodes of WB(s) are as follows:
(a) the and-nodes are the atomic components Bi, i ∈ {1..n},
(b) the or-nodes are the interactions a ∈ γ,

2. there is an edge in WB(s) from Bi to every node a such that Bi ∈ components(a)

and si(enb
i
a
) = true, i.e., from Bi to every interaction which Bi enables in si,

3. there is an edge in WB(s) from a to every Bi such that Bi ∈ components(a) and

si(enb
i
a
) = false, i.e., from a to every component Bi which participates in a but does

not enable it, in state si.

A component Bi is an and-node since all of its successor actions (or-nodes) must be
disabled for Bi to be incapable of executing. An interaction a is an or-node since it is
disabled if any of its participant components do not enable it. An edge (path) in a wait-
for-graph is called a wait-for-edge (wait-for-path). Write a → Bi (Bi → a respectively)
for a wait-for-edge from a to Bi (Bi to a respectively). We abuse notation by writing
e ∈ WB(s) to indicate that e (either a → Bi or Bi → a) is an edge in WB(s). Also
Bi → a → B′

i ∈ WB(s) for Bi → a ∈ WB(s) ∧ a → B′

i ∈ WB(s), i.e., for a wait-for-path of
length 2, and similarly for longer wait-for-paths.

Consider the dining philosophers system given in Figure 1. Figure 2(a) shows its
wait-for-graph in its sole initial state. Figure 2(b) shows the wait-for-graph after exe-
cution of get0. Edges from components to interactions are shown solid, and edges from
interactions to components are shown dashed.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

(a) Wait-for-graph in initial state.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

(b) Wait-for-graph after execution of get0.

Fig. 2. Example wait-for-graphs for dining philosophers system of Figure 1.

A key principle of the dynamics of the change of wait-for graphs is that wait-for
edges not involving some interaction a and its participants Bi ∈ components(a) are

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 9 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:9

unaffected by the execution of a. Say that edge e in a wait-for-graph is Bi-incident iff
Bi is one of the endpoints of e.

Proposition 3.4 (Wait-for edge preservation) Let s
a
→ t be a transition of composite

component B = γ(B1, . . . ,Bn), and let e be a wait-for edge in WB(s) that is not Bi-
incident, for every Bi ∈ components(a). Then e ∈WB(s) iff e ∈WB(t).

Proof. Fix e to be an arbitrary wait-for-edge that is not Bi-incident. e is either Bj → b
or b→ Bj , for some component Bj of B that is not in components(a), and an interaction

b (different from a) that Bj participates in. Now s↾Bj = t↾Bj , since s
a
→ t and Bj 6∈

components(a). Hence s(enbjb) = t(enbjb). It follows from Definition 3.3 that e ∈WB(s) iff
e ∈WB(t). ✷

3.2. Supercycles and deadlock-freedom

We characterize a deadlock as the existence in the wait-for-graph of a graph-theoretic
construct that we call a supercycle.

Definition 3.5 (Supercycle) Let B = γ(B1, . . . ,Bn) be a composite component and s
be a state of B. A subgraph SC of WB(s) is a supercycle in WB(s) if and only if all of the
following hold:

1. SC is nonempty, i.e., contains at least one node,
2. if Bi is a node in SC , then for all interactions a such that there is an edge in WB(s)
from Bi to a:

(a) a is a node in SC , and
(b) there is an edge in SC from Bi to a,

that is, Bi → a ∈WB(s) implies Bi → a ∈ SC ,
3. if a is a node in SC , then there exists a Bj such that:

(a) Bj is a node in SC , and
(b) there is an edge from a to Bj in WB(s), and
(c) there is an edge from a to Bj in SC ,

that is, a ∈ SC implies ∃Bj : a→ Bj ∈WB(s) ∧ a→ Bj ∈ SC ,

where a ∈ SC means that a is a node in SC , etc. Also, write SC ⊆WB(s) when SC is a
subgraph of WB(s).

Definition 3.6 (Supercycle-free) WB(s) is supercycle-free iff there does not exist a
supercycle SC in WB(s). In this case, say that state s is supercycle-free. Formally, we

define the predicate sc freeB(s) , ¬∃SC : SC ⊆WB(s) and SC is a supercycle.

Figure 3 shows an example supercycle (with boldened edges) for the dining philoso-
phers system of Figure 1. P0 waits for (enables) a single interaction, Get0. Get0 waits
for (is disabled by) fork F0, which waits for interaction Rel0. Rel0 in turn waits for P0.
However, this supercycle occurs in a state where P0 is in h and F0 is in ul. This state is
not reachable from the initial state.

Figure 4 shows an example of a supercycle that is not a simple cycle. The “essential”
part of the supercycle, consisting of components B1, B2, B3, and their actions a, b, c, d,
is boldened. The supercycle can be extended to contain B4, but beither B5 nor B6: B6

is enabled, and B5 has is ready to execute h, which waits only for B6. Figure 5 shows
that deleting the wait-for edge from d to B1 in Figure 4 results in an example where

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 10 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:10 P.C. Attie et al.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

Fig. 3. Example supercycle for dining philosophers system of Figure 1.

i

B1

a b

B2 B3

c d

B4

e

B5

g

f

h B6

Fig. 4. Example supercycle that is not a simple cycle

there is a cycle of wait-for-edges, without there being a supercycle. This shows that a
cycle does not necessarily imply a supercycle, and hence deadlock.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 11 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:11

i

B1

a b

B2 B3

c d

B4

e

B5

g

f

h B6

Fig. 5. Example where a wait-for cycle does not imply deadlock

The existence of a supercycle is sufficient and necessary for the occurrence of a
deadlock, and so checking for supercycles gives a sound and complete check for dead-
locks. Proposition 3.7 states that the existence of a supercycle implies a local deadlock:
all components in the supercycle are blocked forever.

PROPOSITION 3.7. Let s be a state of B. If SC ⊆WB(s) is a supercycle, then all com-
ponents Bi in SC cannot execute a transition in any state reachable from s, including s
itself.

Proof. Let Bi be an arbitrary component in SC. By Definition 3.5, every interaction
that Bi enables has a wait-for-edge to some other component Bj in SC and so cannot
be executed in state s. Hence in any transition from s to another global state t, all of
the components Bi in SC remain in the same local state. Hence SC ⊆ WB(t), i.e., the
same supercycle SC remains in global state t. Repeating this argument from state t
and onwards leads us to conclude that SC ⊆ WB(u) for any state u reachable from s.
✷

Proposition 3.8 states that the existence of a supercycle is necessary for a local
deadlock to occur: if a set of components, considered in isolation, are blocked, then
there exists a supercycle consisting of exactly those components, together with the
interactions that each component enables.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 12 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:12 P.C. Attie et al.

PROPOSITION 3.8. Let B′ be a subcomponent of B, and let s be an arbitrary state of
B such that B′, when considered in isolation, has no enabled interaction in state s↾B′.
Then, WB(s) contains a supercycle.

Proof. Let Bi be an arbitrary atomic component in B′, and let ai be any interaction that
Bi enables. Since B′ has no enabled interaction, it follows that ai is not enabled in B′,
and therefore has a wait-for-edge to some atomic component Bj in B′. Let SC be the
subgraph of WB(s) induced by:

(1) the atomic components of B′,
(2) the interactions a that each atomic component Bi enables, and the edges Bi → a,

and
(3) the edges a → Bj from each interaction to some atomic component Bj in B′ that

does not enable Bj .

SC satisfies Definition 3.5 and so is a supercycle. ✷

We consider subcomponent B′ in isolation to avoid other phenomena that prevent
interactions from executing, e.g., conspiracies [Attie et al. 1993]. Now the converse
of Proposition 3.8 is that absence of supercycles in WB(s) means there is no locally
deadlocked subsystem.

Corollary 3.9 (Supercycle-free implies free of local deadlock) If, for every reach-
able state s of (B, Q0), WB(s) is supercycle-free, then (B, Q0) is free of local deadlock.

Proof. We establish the contrapositive. Suppose that (B, Q0) is not free of local dead-
lock. Then there exists a subsystem (B′, Q′

0) of (B, Q0), and a reachable state s of
(B′, Q′

0), such that B′ enables no interaction in state s↾B′. By Proposition 3.8, WB(s)
contains a supercycle. ✷

In the sequel, we say “deadlock-free” to mean “free of local deadlock”.

We wish to check whether supercycles can be formed or not. In principle, we could
check directly whether WB(t) contains a supercycle, for each reachable state t. How-
ever, this approach is subject to state-explosion, and so is usually unlikely to be viable
in practice. Instead, we formulate global conditions for supercycle-freedom, and then
“project” these conditions onto small subsystems, to obtain local versions of these con-
ditions that are (1) efficiently checkable, and (2) imply the global versions. To formulate
these conditions, we need to characterize the static (structural) and dynamic (forma-
tion) properties of supercycles.

3.3. Structural properties of supercycles

We present some structural properties of supercycles, which are central to our
deadlock-freedom conditions.

Definition 3.10 (Path, path length) Let G be a directed graph and v a vertex in
G. A path π in G is a finite sequence v0, v1, . . . , vn such that (vi, vi+1) is an edge in G
for all i ∈ {0, . . . , n − 1}. Write pathG(π) iff π is a path in G. Define first(π) = v0 and
last(π) = vn. Let |π| denote the length of π, which we define as follows:

— if π is simple, i.e., all vi, 0 ≤ i ≤ n, are distinct, then |π| = n, i.e., the number of edges
in π

— if π contains a cycle, i.e., there exist vi, vj such that i 6= j and vi = vj , then |π| = ω (ω
for “infinity”).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 13 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:13

Definition 3.11 (In-depth, Out-depth) Let G be a directed graph and v a vertex in
G. Define the in-depth of v in G, notated as in depthG(v), as follows:

— if there exists a path π in G that contains a cycle and ends in v, i.e., |π| = ω∧ last(π) =
v, then in depthG(v) = ω,

— otherwise, let π be a longest (simple) path ending in v. Then in depthG(v) = |π|.

Formally, in depthG(v) = (MAX π : pathG(π) ∧ last(π) = v : |π|).

Likewise define the out-depth of v in G, notated as out depthG(v), as follows:

— if there exists a path π in G that contains a cycle and starts in v, i.e., |π| = ω∧first(π) =
v, then out depthG(v) = ω,

— otherwise, let π be a longest (simple) path starting in v. Then out depthG(v) = |π|.

Formally, out depthG(v) = (MAX π : pathG(π) ∧ first(π) = v : |π|).

We use in depthB(v, s) for in depthWB(s)
(v), and also out depthB(v, s) for

out depthWB(s)
(v).

PROPOSITION 3.12. A supercycle SC contains no nodes with finite out-depth.

Proof. By contradiction. Let v be a node in SC with finite out-depth. Hence by Defini-
tion 3.11 all outgoing paths from v are simple (and finite), and end in a sink node w, so
w has no outgoing wait-for-edges. By assumption, all atomic components are individu-
ally deadlock-free, i.e., they always enable at least one interaction. So if w is an atomic
component Bi, we have a wait-for-edge Bi → a for some interaction a, contradicting
the fact that w is a sink node. Hence w is some interaction a. Since a has no outgoing
edges, it violates clause 3 in Definition 3.5, contradicting the assumption that SC is a
supercycle. ✷

PROPOSITION 3.13. Every supercycle SC contains at least two nodes.

Proof. By Definition 3.5, SC is nonempty, and so contains at least one node v. If v is
an interaction a, then by Definition 3.5, SC also contains some component Bi such that
a→ Bi. If v is a component Bi, then, by assumption, Bi enables at least one interaction
a, and by Definition 3.5, every interaction that Bi enables must be in SC . Hence in both
cases, SC contains at least two nodes. ✷

PROPOSITION 3.14. Every supercycle SC contains at least one cycle.

Proof. By contradiction. Suppose that SC is a supercycle and is also acyclic. Then every
path in SC is simple, and therefore finite. Hence every node in SC has finite out-depth.
By Proposition 3.12, SC cannot be a supercycle. ✷

PROPOSITION 3.15. Let B = γ(B1, . . . ,Bn) be a composite component and s a state
of B. Let SC be a supercycle in WB(s), and let SC ′ be the graph obtained from SC by
removing all vertices of finite in-depth and their incident edges. Then SC ′ is also a
supercycle in WB(s).

Proof. A vertex with finite in-depth cannot lie on a cycle in SC . Hence by Proposi-
tion 3.14, SC ′ 6= ∅. Thus SC ′ satisfies clause (1) of the supercycle definition (3.5). Let
v be an arbitrary vertex of SC ′. Thus v ∈ SC and in depthSC (v) = ω by definition of
SC ′. Let w be an arbitrary successor of v in SC . in depthSC (w) = ω by Definition 3.11.
Hence w ∈ SC ′, by definition of SC ′. Furthermore, w is a successor of v in SC ′, since

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 14 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:14 P.C. Attie et al.

SC ′ consists of all nodes of SC with infinite in-depth. Hence the successors of v in SC ′

are the same as the successors of v in SC Now since SC is a supercycle, every vertex
v in SC has enough successors in SC to satisfy clauses (2) and (3) of the supercycle
definition (3.5). It follows that every vertex v in SC ′ has enough successors in SC ′ to
satisfy clauses (2) and (3) of the supercycle definition (3.5). ✷

PROPOSITION 3.16. Every supercycle SC contains a maximal strongly connected
component CC such that (1) CC is itself a supercycle, and (2) there is no wait-for-edge
from a node in CC to a node outside of CC .

Proof. SC is a directed graph, and so consider the decomposition of SC into its maximal
strongly connected components (MSCC). Let SC be the graph resulting from replacing
each MSCC by a single node. By its construction, SC is acyclic, and so contains at
least one node x with no outgoing edges. Let CC be the MSCC corresponding to x.
It follows that CC is nonempty, and hence CC satisfies clause (1) of the supercycle
definition (3.5). It also follows from the construction of CC that no node in CC has
a wait-for-edge going to a node outside of CC , and so Clause (2) of the Proposition is
established.

Let v be an arbitrary node in CC . Since CC ⊆ SC , v is a node of SC . Let w be an
arbitrary successor of v in SC . Since no node in CC has an edge going to a node outside
of CC , it follows that w is a node of CC . Hence v has the same successors in CC as in
SC . Now since SC is a supercycle, every vertex v in SC has enough successors in SC to
satisfy clauses (2) and (3) of the supercycle definition (3.5). It follows that every vertex
v in CC has enough successors in CC to satisfy clauses (2) and (3) of the supercycle
definition (3.5).

Hence, by Definition 3.5, CC is itself a supercycle, and so Clause (1) of the Proposi-
tion is established. ✷

Note also that by Proposition 3.13, CC contains at least two nodes. Hence CC is
not a trivial strongly connected component.

PROPOSITION 3.17. Let SC ,SC ′ be supercycles in WB(s). Then SC ∪SC ′ is a super-
cycle in WB(s).

Proof. Straightforward, since each node in SC ∪SC ′ has enough successors that it waits
for to satisfy Def. 3.5. ✷

4. SUPERCYCLE FORMATION AND ITS CONSEQUENCES

4.1. Supercycle Membership

Definition 4.1 (Supercycle membership, scycB(s, v)) Let v be a node of WB(s). Then
scycB(s, v) holds iff there exists a supercycle SC ⊆WB(s) such that v ∈ SC.

If a component or interaction is not a node of a supercycle, then we say that it has
a SC-violation, i.e., a supercycle-violation.

Define predsB(s, v) = {w | w → v ∈ WB(s)} and succsB(s, v) = {w | v → w ∈ WB(s)}.
The definition of a supercycle (Def. 3.5) imposes certain constraints on supercycle mem-
bership of a node w.r.t. its predecessors and successors in the wait-for-graph, as follows:

Proposition 4.2 (Supercycle-membership constraints) Let a,Bi be nodes of
WB(s). Then

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 15 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:15

(1) scycB(s,Bi)⇔ (∀ a ∈ succsB(s,Bi) : scycB(s, a)).
(2) scycB(s,Bi)⇒ (∀ a ∈ predsB(s,Bi) : scycB(s, a)).
(3) scycB(s, a)⇔ (∃Bi ∈ succsB(s, a) : scycB(s,Bi)).
(4) scycB(s, a)⇐ (∃Bi ∈ predsB(s, a) : scycB(s,Bi)).

PROOF. We deal with each clause in turn.

Proof of Clause 1. Assume scycB(s,Bi), and let SC ⊆ WB(s) be the supercycle
containing Bi. Let aa ∈ succsB(s,Bi). By Def. 3.5, Clause 2, aa ∈ SC . Hence (∀ a ∈
succsB(s,Bi) : scycB(s, a)). We conclude scycB(s,Bi) ⇒ (∀ a ∈ succsB(s,Bi) : scycB(s, a)).
Now assume (∀ a ∈ succsB(s,Bi) : scycB(s, a)), and let SC be the union of all the
supercycles containing all the a ∈ succsB(s,Bi). By Prop. 3.17, SC ⊆ WB(s) is a
supercycle. Let SC ′ be SC with Bi → a added, for all a ∈ succsB(s,Bi). Then SC ′

is a supercycle by Def. 3.5, and also SC ′ ⊆ WB(s). Hence scycB(s, a). We conclude
scycB(s,Bi)⇐ (∀ a ∈ succsB(s,Bi) : scycB(s, a)).

Proof of Clause 2. Assume scycB(s,Bi), so that SC ⊆ WB(s) is the supercycle con-
taining Bi. Let a ∈ predsB(s,Bi), and let SC ′ be SC with a → Bi added. Hence SC ′ is
a supercycle by Definition 3.5, Clause 3. Since a was chosen arbitrarily, we conclude
(∀ a ∈ predsB(s,Bi) : scycB(s, a)).

Proof of Clause 3. Assume scycB(s, a), and let SC ⊆ WB(s) be the supercycle con-
taining a. By Def. 3.5, Clause 3, there exists a Bi ∈ succsB(s, a) such that Bi ∈ SC .
Hence scycB(s,Bi). We conclude scycB(s, a) ⇒ (∃Bi ∈ succsB(s, a) : scycB(s,Bi)). Now
assume (∃Bi ∈ succsB(s, a) : scycB(s,Bi)), and let SC ⊆ WB(s) be the supercycle
containing some Bi ∈ succsB(s, a). Let SC ′ be SC with a → Bi added. Then SC ′

is a supercycle by Def. 3.5, and also SC ′ ⊆ WB(s). Hence scycB(s, a). We conclude
scycB(s, a)⇐ (∃Bi ∈ succsB(s, a) : scycB(s,Bi)).

Proof of Clause 4. Assume ¬scycB(s, a), so that a is not in any supercycle of WB(s).
Let Bi ∈ predsB(s, a). By Def. 3.5, Clause 2, Bi cannot be in any supercycle of WB(s),
since all aa ∈ succsB(s,Bi) must also be in the supercycle. Hence ¬scycB(s,Bi). Since Bi

was chosen arbitrarily, we conclude ¬scycB(s, a) ⇒ (∀Bi ∈ predsB(s, a) : ¬scycB(s,Bi)),
the contrapositive of Clause 4.

Note that Clause 2 cannot be strengthened to an equivalence: if all the interactions
that wait for a component Bi are in a supercycle, then Bi itself may or may not be in a
supercycle, depending on whether Bi is waiting for some aa that is not in a supercycle.
Likewise, Clause 4 cannot be strengthened to an equivalence: if a is in a supercycle,
then any component Bi that waits for a may or may not be in a supercycle, depending
on whether Bi is waiting for some aa that is not in a supercycle.

While Prop. 4.2 gives relationships between supercycle membership of a node and
both its successors and predecessors, nevertheless Def. 3.5 implies that the “causality”
of supercycle-membership of a node v is from the successors of v to v, i.e., membership
of v in a supercycle is caused only by membership of v’s successors in a supercycle.
Repeating this step, we infer that v’s supercycle-membership is caused by the subgraph
of the wait-for graph that is reachable from v.

Hence, we follow outgoing wait-for edges in computing supercycle-membership. Ac-
tually, it turns out to be easier to compute the negation of supercycle membership,
which we call supercycle violation. This is because supercycle-violation has a base case:
when a node has no outgoing wait-for edges. We need a base case, and an inductive def-
inition, because a node that is not in any supercycle may nevertheless be a node of a
wait-for cycle, since a cycle of wait-for-edges does not necessarily imply a supercycle.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 16 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:16 P.C. Attie et al.

scViolateB(v, d, t)
0. if (d = 1 ∧ v = a ∧ ¬(∃Bi : a→ Bi ∈WB(t))) return(tt) fi ✄base case for tt result
1. if (v = Bi ∧ (∃ a : Bi → a ∈WB(t) : (∃ d

′ : 1 ≤ d′ < d : scViolateB(a, d
′, t)))) return(tt) fi

2. if (v = a ∧ (∀Bi : a→ Bi ∈WB(t) : (∃ d
′ : 1 ≤ d′ < d : scViolateB(Bi, d

′, t)))) return(tt) fi
3. return(ff) ✄no case for tt result, so result is ff

Fig. 6. Formal definition of scViolateB(v, d, t)

Hence, to compute supercycle violation properly, we introduce a notion of the level of a
violation. A node with no outgoing wait-for edges has a level-1 violation. A node whose
violation is based on outgoing edges to neighbors whose violation level is at most d− 1,
has itself a level-d violation. We formalize the notion of level-d supercycle violation as
the predicate scViolateB(v, d, t), defined by induction on d.

Definition 4.3 (Supercycle violation, scViolateB(v, d, t)) Let t be a state of (B, Q0),
v be a node of WB(t), and d an integer ≥ 1. We define the predicate scViolateB(v, d, t) by
induction on d, as follows. We indicate the justification for each clause of the definition.

Base case, d = 1. scViolateB(v, 1, t) iff v is an interaction a and it has no outgoing wait-

for-edges, otherwise ¬scViolateB(v, 1, t). Justification: if v has no outgoing wait-for-edges,
then it cannot be in a supercycle. Note that v must be an interaction in this case, since
a component must have at least one outgoing wait-for edge at all times.

Inductive step, d > 1. scViolateB(v, d, t) iff any of the following cases hold. Otherwise

¬scViolateB(v, d, t).

(1) v is a component Bi and there exists interaction a such that Bi → a ∈ WB(t) and
(∃ d′ : 1 ≤ d′ < d : scViolateB(a, d

′, t)). That is, Bi enables an interaction a which has
a level-d′ supercycle-violation, for some d′ < d. Justification is Prop. 4.2, Clause 1.

(2) v is an interaction a and for all components Bi such that a → Bi ∈ WB(t), we have
(∃ d′ : 1 ≤ d′ < d : scViolateB(Bi, d

′, t)). That is, each component Bi that a waits
for has a level-d′ supercycle-violation, for some d′ < d. Justification is Prop. 4.2,
Clause 3.

Figure 6 gives a formal, recursive definition of scViolateB(v, d, t). The notation v = Bi

means that v is some component Bi. Likewise, v = a means that v is some interaction
a. Line 0 corresponds to the base case, line 1 corresponds to item 1 of the inductive
case, and line 2 corresponds to item 2 of the inductive case. Line 3 handles all cases
that do not return true.

In the sequel, we say sc-violation rather than “supercycle violation.” The crucial
result is that, if v has a level-d sc-violation, for some d ≥ 1, then v cannot be a node of
a supercycle.

Proposition 4.4 (Soundness of supercycle violation w.r.t. supercycle non-
membership) If (∃ d ≥ 1 : scViolateB(v, d, t)) then ¬scycB(t, v), i.e., supercycle violation
implies supercycle non-membership.

Proof. Proof is by induction in d.

Base case, d = 1. v has no outgoing edges. Hence v cannot be in a supercycle.

Induction step, d > 1. Assume that v has a level d SC-violation. We have two cases.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 17 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:17

Case 1: v is a component Bi. Hence there exists an interaction a such that Bi → a ∈
WB(t) and a has a level-(d− 1) SC-violation. By the induction hypothesis, ¬scycB(t, a).
By Prop. 4.2, Clause 1, ¬scycB(t,Bi).

Case 2: v is an interaction a. Hence for all components Bi such that a→ Bi ∈WB(t), Bi

has a level-(d − 1) SC-violation. By the induction hypothesis, (∀Bi : a → Bi ∈ WB(t) :
¬scycB(t,Bi)). By Prop. 4.2, Clause 3, ¬scycB(t, a). ✷

Proposition 4.5 (Completeness of supercycle violation w.r.t. supercycle non-
membership) If ¬scycB(t, v) then (∃ d ≥ 1 : scViolateB(v, d, t)), i.e., supercycle non-
membership implies supercycle violation.

Proof. We establish the contrapositive (∀ d ≥ 1 : ¬scViolateB(v, d, t)) then scycB(t, v). Let
V be the set of nodes in WB(t) with a supercycle-violation, i.e., V = {w | w ∈ WB(t) ∧
(∃ d : scViolateB(w, d, t))}. Let V be the remaining nodes, i.e., all nodes in WB(t) that do
not have a supercycle-violation, so V = {w | w ∈WB(t) ∧ (∀ d ≥ 1 : ¬scViolateB(v, d, t))}.

If V is empty then the proposition holds vacuously and we are done. So assume that
V is non-empty and let v be an arbitrary node in V .

Case 1: v is a component Bi. Suppose that there is a wait-for-edge from v to some
interaction a that is in V . Then, by Definition 4.3, v has a supercycle violation, which
contradicts the choice of v as a member of V . Hence all wait-for-edges starting in v
must end in a node in V .

Case 2: v is an interaction a. Suppose that every wait-for-edge from v to some com-
ponent Bi that is in V . Then, by Definition 4.3, v has a supercycle violation, which
contradicts the choice of v as a member of V . Hence some wait-for-edge starting in v
must end in a node in V .

Hence we have that V satisfies all three clauses of Definition 3.5: it is nonempty,
each component in V has all its enabled interactions also in V , and each interaction in
V waits for a component in V . Hence V as a whole is a supercycle. Since the nodes of
V are, by definition of V , exactly the nodes v such that (∀ d ≥ 1 : ¬scViolateB(v, d, t)), we
have that any such node v is a node of a supercycle in WB(t), i.e., scycB(t, v). Hence the
Proposition is established. ✷

PROPOSITION 4.6. ¬scycB(t, v) iff (∃ d ≥ 1 : scViolateB(v, d, t)).

Proof. Immediate from Propositions 4.4 and 4.5. ✷

4.2. The supercycle formation condition

We use the structural properties of supercycles (Sect. 3.3) and the dynamics of wait-
for graphs (Prop. 3.4) to define a condition that must hold whenever a supercycle is
created. Negating this condition then implies the absence of supercycles.

Proposition 4.7 (Supercycle formation condition) Assume that s
a
→ t is a transi-

tion of (B, Q0), WB(s) is supercycle-free, and that WB(t) contains a supercycle. Then, in
WB(t), there exists a CC such that

(1) CC is a subgraph of WB(t)
(2) CC is strongly connected
(3) CC is a supercycle

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 18 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:18 P.C. Attie et al.

(4) in WB(t), there is no wait-for edge from a node in CC to a node outside of CC
(5) there exists a component Bi ∈ components(a) such that Bi is in CC

PROOF. By assumption, there is a supercycle SC that is a subgraph of WB(t). By
Proposition 3.16, SC contains a subgraph CC that is strongly connected, is itself a
supercycle, and such that there is no wait-for-edge from a node in CC to a node outside
of CC . This establishes Clauses 1–4.

Now suppose Bi 6∈ CC for every Bi ∈ components(a). Then, no edge in CC is Bi-
incident. Hence, by Proposition 3.4, every edge in CC is an edge in WB(s). Hence CC is
a subgraph of WB(s). Now let v be an arbitrary node in CC . Suppose v is a component
Bj . By assumption, Bj 6∈ components(a), and so s↾Bj = t↾Bj by Definition 2.3. Hence Bj

enables the same set of interactions in state s as in state t. Also, in WB(t), all of Bj ’s
wait-for edges must end in an interaction that is in CC , since CC is a supercycle in
WB(t). Hence the same holds in WB(s). If v is an interaction, it must also have a wait-
for-edge e′ to some component Bj ∈ CC , since CC is a supercycle in WB(t). Hence this
also holds in WB(s). Hence v has enough successors in CC to satisfy the supercycle
definition (Def. 3.5). We conclude that CC by itself is a supercycle in WB(s), which
contradicts the assumption that WB(s) is supercycle-free. Hence, Bi ∈ CC for some
Bi ∈ components(a), and so Clause 5 is established.

4.3. General supercycle violation condition

We use Prop. 4.7 to formulate a condition that prevents the formation of supercycles.

For transition s
a
→ t, we determine for every component Bi ∈ components(a) whether it

is possible for Bi to be a node in a strongly-connected supercycle CC in WB(t). There
are two ways for Bi to not be a node in a strongly-connected supercycle:

(1) no supercycle membership: Bi is not a node of any supercycle, i.e., ¬scycB(s,Bi).
(2) no strong-connectedness: Bi is a node in a supercycle, but not a node in a strongly-

connected supercycle.

We formalize the second condition as follows.

Definition 4.8 (Strong connectedness violation, sConnViolateB(v, t)) Let v be a
node of WB(t). Then sConnViolateB(v, t) holds iff there does not exist a strongly connected
supercycle SSC such that v ∈ SSC and SSC ⊆WB(t).

The general supercycle violation condition is then a disjunction of the supercycle
violation condition and the strong connectedness violation conditions.

Definition 4.9 (General supercycle violation, genViolateB(v, t)) Let v be a node of

WB(t). Then genViolateB(v, t) , (∃ d ≥ 1 : scViolateB(v, d, t)) ∨ sConnViolateB(v, t).

Let s
a
→ t be a reachable transition. If, for every Bi ∈ components(a), genViolateB(v, t)

holds, then, as we show below, s
a
→ t does not introduce a supercycle, i.e., if s is

supercycle-free, then so is t. However, evaluating this condition over all global tran-
sitions is subject to state explosion, and so we formulate below a “local” version of
the general condition, which can be evaluated in “small subsystems”, and so we of-
ten avoid state-explosion. Hence the advantage of the local versions is that they are
usually efficiently computable, as we show in the sequel. We also formulate a “linear”

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 19 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:19

condition (both global and local), which is simpler (but “more incomplete”) than the
general condition, and so is easier to evaluate.

We remark that, as shown above (∃ d ≥ 1 : scViolateB(v, d, t)) implies that v cannot
be in a supercycle. Hence, v cannot be in a strongly-connected supercycle. Hence (∃ d ≥
1 : scViolateB(v, d, t)) implies sConnViolateB(v, t). It is however convenient to state the
formation violation condition in this manner, since we will formulate a local version
for each of (∃ d ≥ 1 : scViolateB(v, d, t)) and sConnViolateB(v, t), and the implication does
not necessarily hold for the local versions.

We therefore now have four deadlock-freedom conditions: global general, local gen-
eral, global linear, and local linear. We therefore define an abstract version of the
deadlock-freedom condition first.

4.4. Abstract supercycle freedom conditions

Since we will present several conditions for supercycle-freedom, we now present an ab-
stract definition of the essential properties that all such conditions must have. The key
idea is that execution of an interaction a does not create a supercycle, and so any con-
dition which implies this for a is sufficient. if a different condition implies the same for
another interaction aa, this presents no problem w.r.t. establishing deadlock-freedom.
Hence, it is sufficient to have one such condition for each interaction in (B, Q0). Since
each condition restricts the behavior of interaction execution, we call it a “behavioral
restriction condition”.

Definition 4.10 (Behavioral restriction condition) A behavioral restriction con-
dition BC is a predicate BC : (B, Q0, a)→ {tt, ff}.

BC is a predicate on the effects of a particular interaction a within a given system
(B, Q0).

Definition 4.11 (Supercycle-freedom preserving) A behavioral restriction condi-
tion BC is supercycle-freedom preserving iff, for every system (B, Q0) and a ∈ γ such
that BC(B, Q0, a) = tt, the following holds:

for every reachable transition s
a
→ t of (B, Q0)

if s is supercycle-free, then t is supercycle-free.

Theorem 4.12 (Deadlock-freedom via supercycle-freedom preserving restric-
tion) Assume that

(1) for all s0 ∈ Q0, WB(s0) is supercycle-free, and
(2) there exists a supercycle-freedom preserving restriction BC such that, for all a ∈ γ:
BC(B, Q0, a) = tt

Then for every reachable state u of (B, Q0): WB(u) is supercycle-free.

PROOF. Let u be an arbitrary reachable state. The proof is by induction on the
length of the finite execution α that ends in u. Assumption 1 provides the base case, for
α having length 0, and so u ∈ Q0. For the induction step, we establish: for every reach-

able transition s
a
→ t, WB(s) is supercycle-free implies that WB(t) is supercycle-free.

This is immediate from Assumption 2, and Definition 4.11.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 20 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:20 P.C. Attie et al.

Since the above proof does not make any use of the requirement that there is a
single restriction BC for all interactions, we immediately have:

Corollary 4.13 (Deadlock-freedom via several supercycle-freedom preserv-
ing restrictions)

Assume that

(1) for all s0 ∈ Q0, WB(s0) is supercycle-free, and
(2) for all a ∈ γ, there exists a supercycle-freedom preserving restriction BC:
BC(B, Q0, a) = tt

Then for every reachable state u of (B, Q0): WB(u) is supercycle-free.

PROOF. Similar to the proof of Th. 4.12, except that, for the transition s
a
→ t, use

the supercycle-freedom preserving restriction BC corresponding to a.

4.5. Overview of the four supercycle-freedom preserving restrictions

The supercycle formation condition (Proposition 4.7) tells us that, when a supercycle
SC is created, some component Bi that participates in the interaction a whose execu-
tion created SC , must be a node of a strongly connected component CC of SC , and
moreover CC is itself a supercycle in its own right. In a sense, CC is the “essential”
part of SC .

Hence, for a BIP system (B, Q0), our fundamental condition for the prevention of

supercycles is that for every reachable transition s
a
→ t resulting from execution of a,

every component Bi of a must exhibit a supercycle-violation (Definition 4.3) in state
t (the state resulting from the execution of a). For a given BIP system (B, Q0) and
interaction a, we denote that condition GALT (B, Q0, a), and define it formally below.
This condition is, in a sense, the “most general” condition for supercycle-freedom.

If GALT (B, Q0, a) holds, and global state s is supercycle-free, and s
a
→ t, then it fol-

lows (as we establish below) that global state t is also supercycle-free. So, by requiring
(1) that all initial states are supercycle-free, and (2) that GALT (B, Q0, a) holds for all
interactions a ∈ γ, we obtain, by straightforward induction on length of executions,
that every reachable state is supercycle-free.

It also follows that any condition which implies GALT (B, Q0, a) is also sufficient
to guarantee supercycle-freedom, and hence deadlock-freedom. We exploit this in two
ways:

(1) To provide a “linear” condition, GLIN , that is easier to evaluate than GALT , since
it requires only the evaluation of lengths of wait-for-paths, i.e., it does not have the
“alternating” character of GALT .

(2) To provide “local variants” of GALT and GLIN , which can often be evaluated in
small subsystems of (B, Q0), thereby avoiding state-explosion. The local conditions
imply the corresponding global ones, i.e., they are sufficient but not necessary for
deadlock-freedom.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 21 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:21

5. GLOBAL CONDITIONS FOR DEADLOCK FREEDOM

5.1. A Global AND-OR Condition for Deadlock Freedom

Our first global condition is the most general possible: simply assert that, after execu-
tion of interaction a, some Bi ∈ components(a) exhibits a supercycle-violation, as given
by scViolateB(Bi, d, t) (Definition 4.3).

Definition 5.1 (GALT (B, Q0, a)) Let s
a
→ t be a reachable transition of (B, Q0). Then,

in t, the following holds. For every component Bi ∈ components(a), the formation viola-
tion condition holds. Formally,

∀Bi ∈ components(a), genViolateB(Bi, t).

We now show that GALT is supercycle-freedom preserving.

THEOREM 5.2. GALT is supercycle-freedom preserving.

Proof. We must establish: for every reachable transition s
a
→ t, WB(s) is supercycle-

free implies that WB(t) is supercycle-free. Our proof is by contradiction, so we assume

the existence of a reachable transition s
a
→ t such that WB(s) is supercycle-free and

WB(t) contains a supercycle.

By Proposition 4.7 there exists a component Bi ∈ components(a) such that Bi is in
CC , where CC is a strongly connected supercycle that is a subgraph of WB(t).

Since CC is a strongly connected supercycle, we have, by Definition 4.8, that
¬sConnViolateB(Bi, t) holds.

Since CC is a supercycle, we have, by Proposition 4.6, that ¬(∃ d ≥ 1 :
scViolateB(Bi, d, t)) holds.

Hence, by Definition 4.9, ¬genViolateB(Bi, t) But, by Definition 5.1, we have
genViolateB(Bi, t). Hence, we have the desired contradiction, and so the theorem holds.
✷

5.2. A Global Linear Condition for Deadlock Freedom

In some cases, a simpler condition suffices to guarantee deadlock-freedom. This sim-
pler condition is “linear”, i.e., it lacks the AND-OR alternation aspect of GALT . After

execution of a reachable transition s
a
→ t of (B, Q0), we consider the in-depth and out-

depth of the components Bi ∈ components(a). There are three cases:

Case 1. Bi has finite in-depth in WB(t): then, if Bi ∈ SC , it can be removed and still
leave a supercycle SC ′, by Proposition 3.15. Hence SC ′ exists in WB(s), and so Bi

is not essential to the creation of a supercycle.
Case 2. Bi has finite out-depth in WB(t): by Proposition 3.12, Bi cannot be part of
a supercycle, and so SC ⊆WB(s).
Case 3. Bi has infinite in-depth and infinite out-depth in WB(t): in this case, Bi is
possibly an essential part of SC , i.e., SC was created in going from s to t.

We thus impose a condition which guarantees that only Case 1 or Case 2 occur.

Definition 5.3 (GLIN (B,Q0, a)) GLIN (B,Q0, a) holds iff, for every reachable transi-

tion s
a
→ t of BIP-system (B, Q0), the following holds in state t:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 22 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:22 P.C. Attie et al.

∀Bi ∈ components(a) : in depthB(Bi, t) < ω ∨ out depthB(Bi, t) < ω.

That is, for every component Bi of components(a): either Bi has finite in-depth, or finite
out-depth, in WB(t).

PROPOSITION 5.4. Assume that node v of WB(t) has a finite in-depth of d in WB(t),
i.e., in depthB(v, t) = d. Then sConnViolateB(v, t).

Proof. A node with finite in-depth cannot be in a wait-for-cycle, and therefore cannot
be in a strongly connected supercycle. ✷

PROPOSITION 5.5. Assume that node v of WB(t) has a finite out-depth of d in WB(t),
i.e., out depthB(v, t) = d. Then scViolateB(v, d+ 1, t).

Proof. Proof is by induction on d.

Base case, d = 0. Hence by out depthB(v, t) = 0 and Definitions 3.10 and 3.11, v has no
outgoing wait-for-edges in WB(t). Hence by Definition 4.3, scViolateB(v, 1, t).

Inductive step, d > 0. Let u be an arbitrary successor of v, i.e., a node u such that v →
u ∈ WB(t). By Definitions 3.10 and 3.11, u has an out-depth d′ that is less than d.
That is, out depthB(u, t) = d′ < d. By the induction hypothesis applied to d′, we obtain
scViolateB(u, d

′ +1, t). Hence by Definition 4.3, Clauses 1 and 2, scViolateB(v, d+1, t). ✷

LEMMA 5.6. ∀ a ∈ γ : GLIN (B, Q0, a)⇒ GALT (B, Q0, a).

Proof. Assume, for arbitrary a ∈ γ, that GLIN (B, Q0, a) holds. That is,

For every reachable transition s
a
→ t of (B, Q0),

∀Bi ∈ components(a) : in depthB(Bi, t) < ω ∨ out depthB(Bi, t) < ω.

By Propositions 5.4 and 5.5,

For every reachable transition s
a
→ t of (B, Q0),

∀Bi ∈ components(a) : sConnViolateB(Bi, t) ∨ (∃ d ≥ 1 : scViolateB(Bi, d, t)).

Hence by Definition 4.9,

For every reachable transition s
a
→ t of (B, Q0),

∀Bi ∈ components(a) : genViolateB(Bi, t)

Hence GALT (B, Q0, a) holds. ✷

THEOREM 5.7. GLIN is supercycle-freedom preserving

Proof. Follows immediately from Lemma 5.6 and Theorem 5.2. ✷

5.3. Deadlock freedom using global restrictions

Corollary 5.8 (Deadlock-freedom via GALT , GLIN) Assume that

(1) for all s0 ∈ Q0, WB(s0) is supercycle-free, and
(2) for all interactions a of B (i.e., a ∈ γ): GALT (B, Q0, a) ∨ GLIN (B, Q0, a) holds.

Then for every reachable state u of (B, Q0): WB(u) is supercycle-free, and so (B, Q0) is
free of local deadlock.

Proof. Immediate from Theorems 5.2, 5.7 and Corollary 4.13. ✷

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 23 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:23

6. LOCAL CONDITIONS FOR DEADLOCK FREEDOM

Evaluating the global restrictions GALT (B,Q0, a), GLIN (B,Q0, a) requires checking
all reachable transitions of (B, Q0), which is, in general, subject to state-explosion. We
need restrictions which imply a global restriction, and which can be checked efficiently.
To this end, we first develop some terminology, and a projection result, for relating the
waiting-behavior in a subsystem of (B,Q0) to that in (B,Q0) overall.

6.1. Projection onto Subsystems

Definition 6.1 (Structure Graph GB, Gℓ
a
) The structure graph GB of composite com-

ponent B = γ(B1, . . . ,Bn) is a bipartite graph whose nodes are the B1, . . . ,Bn and all
the a ∈ γ. There is an edge between Bi and interaction a iff Bi participates in a, i.e.,
Bi ∈ components(a). Define the distance between two nodes to be the number of edges
in a shortest path between them. Let Gℓ

a
be the subgraph of GB that contains a and all

nodes of GB that have a distance to a less than or equal to ℓ.

Definition 6.2 (Deadlock-checking subsystem, Dℓ
a
) Define Dℓ

a
, the deadlock-

checking subsystem for interaction a and depth ℓ, to be the subsystem of (B, Q0) based
on the set of components in G2ℓ

a
.

Definition 6.3 (Border node, interior node of Dℓ
a
) A node v of Dℓ

a
is a border-node

iff it has an edge in GB to a node outside of Dℓ
a
. If node v of Dℓ

a
is not a border node, then

it is an internal node.

Note that all border nodes of Dℓ
a

are interactions, since 2ℓ is even. Hence all component
nodes of Dℓ

a
are interior nodes.

Proposition 6.4 (Wait-for-edge projection) Let (B′, Q′

0) be a subsystem of (B, Q0).
Let s be a state of (B, Q0), and s′ = s↾B′. Let a be an interaction of (B′, Q′

0), and Bi ∈
components(a) an atomic component of B′. Then (1) a→ Bi ∈WB(s) iff a→ Bi ∈WB′(s′),
and (2) Bi → a ∈WB(s) iff Bi → a ∈WB′(s′).

Proof. By Definition 3.3, a → Bi ∈ WB(s) iff s↾i(enbBi

a
) = false. Since s′ = s↾B′, we

have s′↾i = s↾i. Hence s↾i(enbBi

a
) = s′↾i(enbBi

a
). By Definition 3.3, a → Bi ∈ WB′(s′) iff

s′↾i(enbBi

a
) = false. Putting together these three equalities gives us clause (1).

By Definition 3.3, Bi → a ∈ WB(s) iff s↾i(enbBi

a
) = true. Since s′ = s↾B′, we have

s′↾i = s↾i. Hence s↾i(enbBi

a
) = s′↾i(enbBi

a
). By Definition 3.3, Bi → a ∈ WB′(s′) iff

s′↾i(enbBi

a
) = true. Putting the above three equalities together gives us clause (2). ✷

6.2. A Local AND-OR Condition for Deadlock Freedom

We now seek a local condition, which we evaluate in Dℓ
a
, and which implies GALT . We

define local versions of both scViolateB(v, d, t) and sConnViolateB(v, t).

To achieve a local and conservative approximation of scViolateB(v, d, t), we make
the “pessimistic” assumption that the violation status of border nodes of Dℓ

a
cannot be

known, since it depends on nodes outside of Dℓ
a
. Now, if an internal node v of Dℓ

a
can be

marked with a level d sc-violation, by applying Definition 4.3 only within Dℓ
a
, and with

the border nodes marked as non-violating, then it is also the case, as we show below,
that v has a level d sc-violation overall.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 24 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:24 P.C. Attie et al.

To achieve a local and conservative approximation of sConnViolateB(v, t), we project
onto a subsystem.

6.2.1. Local supercycle violation condition. We define the predicate scViolateLoc(v, d, t,Dℓ
a
)

to hold iff node v in WB(t) has a level-d supercycle-violation that can be confirmed
within Dℓ

a
.

Definition 6.5 (Local supercycle violation, scViolateLoc(v, d, ta,D
ℓ
a
)) Let ta be a

state of Dℓ
a

and v be a node of Dℓ
a
. We define scViolateLoc(v, d, ta,D

ℓ
a
) by induction on

d, as follows.

Base case, d = 1. scViolateLoc(v, 1, ta,D
ℓ
a
) iff v is an interaction aa and aa is an

interior node of Dℓ
a

that has no outgoing wait-for edges in WDℓ
a
(ta). Otherwise

¬scViolateLoc(v, 1, ta,D
ℓ
a
).

Inductive step, d > 1. scViolateLoc(v, d, ta,D
ℓ
a
) iff either of the following two cases hold.

Otherwise ¬scViolateLoc(v, d, ta,D
ℓ
a
).

(1) v is a component Bi and there exists an interaction aa such that Bi → aa ∈ WDℓ
a
(ta)

and (∃ d′ : 1 ≤ d′ < d : scViolateLoc(aa, d′, ta,D
ℓ
a
)). That is, Bi enables an interaction

aa which has a level-d′ supercycle-violation in Dℓ
a
, for some d′ < d.

(2) v is an interaction aa and an internal node of Dℓ
a

and for all components Bi such

that aa → Bi ∈ WDℓ
a
(ta), we have (∃ d′ : 1 ≤ d′ < d : scViolateLoc(Bi, d

′, ta,D
ℓ
a
)).

That is, each component Bi that aa waits for has a level-d′ supercycle-violation in
Dℓ

a
, for some d′ < d

Note that if v is an interaction aa and a border node, then scViolateLoc(aa, d, ta,D
ℓ
a
) is

false, for all d. This is because aa has some component that is outside Dℓ
a
, and so this

component cannot be checked. A component cannot have a level-1 supercycle-violation
since it must have at least one outgoing wait-for edge at all times. Figure 7 gives a
formal, recursive definition of scViolateLoc(v, d, ta,D

ℓ
a
). The notation v = Bi means that

v is some component Bi. Likewise, v = aa means that v is some interaction a, and
“v = aa is interior” means that v is an interaction a and also an internal node. Line
0 corresponds to the base case, line 1 corresponds to item 1 of the inductive case, and
line 2 corresponds to item 2 of the inductive case. Line 3 handles all cases that do not
return true.

scViolateLoc(v, d, ta,D
ℓ
a
)

✄ Precondition: v is a node of Dℓ
a

and d ≥ 1
0. if (d = 1 ∧ v = aa is interior ∧ ¬(∃Bi : aa→ Bi ∈WDℓ

a
(ta))) return(tt);

1. if (v = aa is interior ∧ (∀Bi : aa→ Bi ∈WDℓ
a
(ta) : (∃ d

′ : 1 ≤ d′ < d : scViolateLoc(Bi, d
′, ta,D

ℓ
a
))))

return(tt);
2. if (v = Bi ∧ (∃ aa : Bi → aa ∈WDℓ

a
(ta) : (∃ d

′ : 1 ≤ d′ < d : scViolateLoc(aa, d′, ta,D
ℓ
a
)))) return(tt);

3. return(ff)
Fig. 7. Formal definition of scViolateLoc(v, d, ta,Dℓ

a).

We now show that a local supercycle-violation implies (global) supercycle-violation.

PROPOSITION 6.6. Let t be an arbitrary reachable state of BIP-system (B, Q0). For
all interactions a ∈ γ, and ℓ ≥ 1, let ta = t↾Dℓ

a
. Then

∀ d ≥ 1 : scViolateLoc(v, d, ta,D
ℓ
a
)⇒ scViolateB(v, d, t).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 25 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:25

Proof. Proof is by induction on d.

Base case, d = 1. Assume scViolateLoc(v, 1, ta,D
ℓ
a
) for some node v. Then, by Figure 7,

v is an interior node and an interaction aa of Dℓ
a
, and has no outgoing wait-for edges.

Therefore, in WB(t), it is still the case that v has no outgoing wait-for edges. Hence
scViolateB(v, 1, t) holds.

Inductive step, d > 1. Assume scViolateLoc(v, d, ta,D
ℓ
a
) for some node v and some d > 1.

We proceed by cases on Figure 7.

(1) v is an interior interaction aa and
(∀Bi : aa→ Bi ∈WDℓ

a
(ta) : (∃ d

′ : 1 ≤ d′ < d : scViolateLoc(Bi, d
′, ta,D

ℓ
a
))).

Choose an arbitrary Bi such that aa → Bi ∈ WDℓ
a
(ta). By the induction hy-

pothesis applied to scViolateLoc(Bi, d
′, ta,D

ℓ
a
), we have scViolateB(Bi, d

′, t) for some
d′ < d. Since WDℓ

a
(ta) ⊆ WB(t) by construction, we have aa → Bi ∈ WB(t) and

scViolateB(Bi, d
′, t). Hence by Definition 4.3, Clause 1, we have scViolateB(v, d, t).

(2) v is a component Bi and

(∃ aa : Bi → aa ∈WDℓ
a
(ta) : (∃ d

′ : 1 ≤ d′ < d : scViolateLoc(aa, d′, ta,D
ℓ
a
))).

By the induction hypothesis applied to scViolateLoc(aa, d′, ta,D
ℓ
a
), we have

scViolateB(aa, d
′, t) for some d′ < d. Since WDℓ

a
(ta) ⊆WB(t) by construction, we have

Bi → aa ∈WB(t) and scViolateB(aa, d
′, t). Hence by Definition 4.3, Clause 1, we have

scViolateB(v, d, t).

✷

6.2.2. Local strong connectedness condition. We now present the local version of the
strong connectedness violation condition, given above in Definition 4.8.

Definition 6.7 (Local strong connectedness violation, sConnViolateLoc(v, ta,D
ℓ
a
))

Let L be the nodes of WDℓ
a
(ta) that have no local supercycle violation, i.e., L = {v | v ∈

Dℓ
a ∧ ¬(∃ d ≥ 1 : scViolateLoc(v, d, ta,D

ℓ
a
))}. Let v be an arbitrary node in L. Let WL =

WDℓ
a
(ta)↾L, i.e., WL is the subgraph of WDℓ

a
(ta) consisting of the nodes in L, and the

edges between those nodes that are also edges in WDℓ
a
(ta).

Then, sConnViolateLoc(v, ta,D
ℓ
a
) holds iff:

(1) there does not exist a nontrivial strongly connected supercycle SSC such that v ∈
SSC and SSC ⊆WL, and

(2) either
(a) every wait-for path π from v to a border node of Dℓ

a contains at least one node
with a local supercycle violation
or

(b) every wait-for path π′ from a border node of Dℓ
a to v contains at least one node

with a local supercycle violation

We show that the local strong connectedness condition implies the global strong
connectedness condition.

PROPOSITION 6.8. Let t be an arbitrary reachable state of BIP-system (B, Q0). For
all interactions a ∈ γ, and ℓ > 0, let ta = t↾Dℓ

a
. Then

sConnViolateLoc(v, ta,D
ℓ
a
)⇒ sConnViolateB(v, t).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 26 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:26 P.C. Attie et al.

PROOF. By contradiction. Assume there exists a node v in Dℓ
a such that

sConnViolateLoc(v, ta,D
ℓ
a
) ∧ ¬sConnViolateB(v, t). By ¬sConnViolateB(v, t) and Defini-

tion 4.8, there exists a strongly connected supercycle SSC such that v ∈ SSC and
SSC ⊆WB(t). Then, there are two cases:

(1) SSC ⊆ WDℓ
a
(ta): let x be any node in SSC. Since x is a node in a super-

cycle, we have by Proposition 4.4, that ¬(∃ d ≥ 1 : scViolateB(x, d, t)). Hence
(∀ d ≥ 1 : ¬scViolateB(x, d, t)). Hence by Proposition 6.6, we have (∀ d ≥ 1 :
¬scViolateLoc(x, d, ta,D

ℓ
a
)). Let L,WL be as given in Definition 6.7. Then x ∈ L,

and since x is an arbitrary node of SSC, we have SSC ⊆ WL. Thus Clause 1 of
Definition 6.7 is violated.

(2) SSC 6⊆WDℓ
a
(ta): then there exists a node x ∈ SSC−Dℓ

a. Since v ∈ SSC, there must

exist a wait-for path π from v to x and a wait-for path π′ from x to v. Since v ∈ Dℓ
a

and x 6∈ Dℓ
a, it follows that both π, π′ cross a border node of Dℓ

a. Furthermore, since
π, π′ are part of SSC, every node along π, π′ is in a supercycle, and so cannot have
a supercycle violation. By Proposition 6.6, the nodes on π, π′ cannot have a local
supercycle violation. Hence Clauses 2a and 2b of Definition 6.7 are violated, since
they require that at least one node along π, π′ respectively, have a local supercycle
violation.

In both cases, Definition 6.7 is violated. But Definition 6.7 must hold, since we have
sConnViolateLoc(v, ta,D

ℓ
a
). Hence the desired contradiction.

6.2.3. General local violation condition. We showed above that local supercycle violation
implies global supercycle violation, and local strong connectedness violation implies
global string connectedness violation. The general global supercycle violation condi-
tion is the disjunction of global supercycle violation and global strong connectedness
violation. Hence we formulate the general local supercycle violation condition as the
disjunction of local supercycle violation and local strong connectedness violation. It
follows that the local supercycle formation condition implies the global supercycle for-
mation condition.

Definition 6.9 (General local supercycle violation, genViolateLoc(v, ta,D
ℓ
a
)) Let v

be a node of Dℓ
a
. Then genViolateLoc(v, ta,D

ℓ
a
) , (∃ d ≥ 1 : scViolateLoc(v, d, ta,D

ℓ
a
)) ∨

sConnViolateLoc(v, ta,D
ℓ
a
).

PROPOSITION 6.10. Let t be an arbitrary reachable state of BIP-system (B, Q0). For
all interactions a ∈ γ, and ℓ > 0, let ta = t↾Dℓ

a
. Then

genViolateLoc(v, ta,D
ℓ
a
)⇒ genViolateB(v, t).

PROOF. Assume that genViolateLoc(v, ta,D
ℓ
a
) holds. Then, by Definition 4.9, (∃ d ≥ 1 :

scViolateLoc(v, d, ta,D
ℓ
a
)) ∨ sConnViolateLoc(v, ta,D

ℓ
a
). We proceed by cases:

(1) (∃ d ≥ 1 : scViolateLoc(v, d, ta,D
ℓ
a
)): hence (∃ d ≥ 1 : scViolateB(v, d, t)) by Proposi-

tion 6.6.
(2) sConnViolateLoc(v, ta,D

ℓ
a
): hence sConnViolateB(v, t) by Proposition 6.8.

By Definition 4.9, genViolateB(v, t) , (∃ d ≥ 1 : scViolateB(u, d, t)) ∨ sConnViolateB(v, t).
Hence we conclude that genViolateB(v, t) holds.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 27 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:27

scViolateB(v, d, t) v confirmed at depth d to not be in supercycle
scViolateLoc(v, d, ta,D

ℓ
a
) v locally determined to not be in a supercycle

sConnViolateB(v, t) v not in a strongly connected supercycle
sConnViolateLoc(v, ta,D

ℓ
a
) v locally determined to not be in a strongly connected supercycle

genViolateB(v, t) v does not contribute to a supercycle
genViolateLoc(v, ta,D

ℓ
a
) v locally determined to not contribute to a supercycle

Fig. 8. Summary of predicates

6.2.4. Local AND-OR Condition. The actual local condition, LALT , is given by applying
the local supercycle formation condition to every reachable transition of the subsystem
Dℓ

a
being considered, and to every component Bi ∈ components(a).

Definition 6.11 (LALT (B, Q0, a, ℓ)) Let ℓ > 0, and let sa
a
→ ta be an arbitrary reach-

able transition of Dℓ
a
. Then, in ta, the following holds. For every component Bi of

components(a): Bi has a supercycle formation violation that can be confirmed within
Dℓ

a
. Formally,
∀Bi ∈ components(a) : genViolateLoc(Bi, ta,D

ℓ
a
).

We showed previously that GALT implies deadlock-freedom, and so it remains to es-
tablish that LALT implies GALT .

LEMMA 6.12. Let a ∈ γ be an interaction of BIP-system (B, Q0). Then
(∃ ℓ > 0 : LALT (B, Q0, a, ℓ)) implies GALT (B, Q0, a)

PROOF. Assume LALT (B, Q0, a, ℓ) for some ℓ > 0. Let s
a
→ t be an arbitrary reach-

able transition of BIP-system (B, Q0), and let sa
a
→ ta be the projection of s

a
→ t onto

Dℓ
a
. By Corollary 2.14, sa

a
→ ta is a reachable transition of Dℓ

a
.

By Definition 6.11, we have for some ℓ > 0:

for every reachable transition sa
a
→ ta of Dℓ

a
:

∀Bi ∈ components(a) : genViolateLoc(Bi, ta,D
ℓ
a
).

From this and Proposition 6.10,

for every reachable transition s
a
→ t of (B, Q0):

∀Bi ∈ components(a) : genViolateB(Bi, t)

Hence, by Definition 5.1, GALT (B, Q0, a) holds.

THEOREM 6.13. LALT is supercycle-freedom preserving

Proof. Follows immediately from Lemma 6.12 and Theorem 5.2. ✷

6.3. A Local Linear Condition for Deadlock Freedom

We now formulate a local version of GLIN . Observe that if in depthB(Bi, t) < ω ∨
out depthB(Bi, t) < ω, then there is some finite ℓ such that in depthB(Bi, t) = ℓ ∨
out depthB(Bi, t) = ℓ.

Definition 6.14 (LLIN (B, Q0, a, ℓ)) Let ℓ > 0 and sa
a
→ ta be an arbitrary reach-

able transition of Dℓ
a
. Then, in ta, the following holds. For every component Bi of

components(a): either Bi has in-depth less than 2ℓ − 1, or out-depth less than 2ℓ − 1,
in WDℓ

a
(ta). Formally,

∀Bi ∈ components(a) : in depthDℓ
a

(Bi, ta) < 2ℓ− 1 ∨ out depthDℓ
a

(Bi, ta) < 2ℓ− 1.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 28 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:28 P.C. Attie et al.

To infer deadlock-freedom in (B, Q0) by checking LLIN (B, Q0, a, ℓ), we show that
wait-for behavior in B “projects down” to any subcomponent B′, and that wait-for be-
havior in B′ “projects up” to B.

Since wait-for-edges project up and down, it follows that wait-for-paths project up
and down, provided that the subsystem contains the entire wait-for-path.

Proposition 6.15 (In-projection, Out-projection) Let ℓ > 0, let Bi be an atomic
component of B, and let (B′, Q′

0) be a subsystem of (B, Q0) which is based on a superset
of G2ℓ

a . Let s be a state of (B,Q0), and s′ = s↾B′. Then (1) in depthB(Bi, s) < 2ℓ − 1 iff
in depthB′(Bi, s

′) < 2ℓ−1, and (2) out depthB(Bi, s) < 2ℓ−1 iff out depthB′(Bi, s
′) < 2ℓ−1.

Proof. We establish clause (1). The proof of clause (2) is analogous, except we replace
paths ending in Bi by paths starting from Bi. The proof of clause (1) is by double
implication.

in depthB(Bi, s) < 2ℓ− 1 implies in depthB′(Bi, s
′) < 2ℓ− 1: Assume

in depthB(Bi, s) < 2ℓ − 1. Let π be an arbitrary wait-for path in WB′(s′) that ends in
Bi. Since (B′, Q′

0) is a subsystem of (B, Q0), by Definition 3.3 and s′ = s↾B′, WB′(s′) is a
subgraph of WB(s). Hence π is a wait-for-path in WB(s). By in depthB(Bi, s) < 2ℓ − 1,
we have |π| < 2ℓ− 1. Hence in depthB′(Bi, s

′) < 2ℓ− 1 since π was arbitrarily chosen.

in depthB′(Bi, s
′) < 2ℓ− 1 implies in depthB(Bi, s) < 2ℓ− 1: Assume

in depthB(Bi, s) ≥ 2ℓ − 1. Then there exists a wait-for path π in WB(s) such that
|π| ≥ 2ℓ − 1. Let ρ be the prefix of π with length 2ℓ − 1. Since (B′, Q′

0) is based on
a superset of G2ℓ

a , and since the distance from Bi to the border of G2ℓ
a is 2ℓ − 1, we

conclude that ρ is a wait-for path that is wholly contained in WB′(s′). Hence we have
in depthB′(Bi, s

′) ≥ 2ℓ − 1. We have thus established in depthB(Bi, s) ≥ 2ℓ − 1 implies
in depthB′(Bi, s

′) ≥ 2ℓ− 1. The contrapositive is the desired result. ✷

We now show that LLIN (B, Q0, a, ℓ) implies GLIN (B, Q0, a), which in turn implies
deadlock-freedom.

LEMMA 6.16. Let a be an interaction of B, i.e., a ∈ γ. If LLIN (B, Q0, a, ℓ) holds for
some finite ℓ > 0, then GLIN (B, Q0, a) holds.

Proof. Let s
a
→ t be a reachable transition of (B, Q0) and let Bi ∈ components(a), sa =

s↾Dℓ
a
, ta = t↾Dℓ

a
. Then sa

a
→ ta is a reachable transition of Dℓ

a
by Corollary 2.14. By

LLIN (B, Q0, a, ℓ), in depthDℓ
a

(Bi, ta) < 2ℓ − 1 ∨ out depthDℓ
a

(Bi, ta) < 2ℓ − 1. Hence by

Proposition 6.15, in depthB(Bi, t) < 2ℓ−1∨out depthB(Bi, t) < 2ℓ−1. So in depthB(Bi, t) <
ω ∨ out depthB(Bi, t) < ω. Hence GLIN (B, Q0, a). ✷

THEOREM 6.17. LLIN is supercycle-freedom preserving

Proof. Follows immediately from Lemma 6.16 and Theorem 5.7. ✷

Proposition 6.18 (Finite out-depth implies local supercycle-violation) For d <
ℓ: (out depthDℓ

a

(v, ta) = d)⇒ scViolateLoc(v, d+ 1, ta,D
ℓ
a
).

Proof. Proof is by induction on d.

Base case, d = 0. Then v has no outgoing wait-for edges. Hence

scViolateLoc(v, 1, ta,D
ℓ
a
) by Definition 6.5.

Induction step, d > 0. Assume (out depthDℓ
a

(v, ta) = d). Then, every outgoing wait-

for edge of v is to some v′ such that (out depthDℓ
a

(v′, ta) = d′ < d). By the induction

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 29 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:29

hypothesis, scViolateLoc(v′, d′ + 1, ta,D
ℓ
a
). Hence, by Definition 6.5, scViolateLoc(v, d +

1, ta,D
ℓ
a
). ✷

LEMMA 6.19. Let a be an interaction of B, i.e., a ∈ γ. Then LLIN (B, Q0, a, ℓ) implies
LALT (B, Q0, a, ℓ).

Proof. Assume LLIN (B, Q0, a, ℓ). Let sa
a
→ ta be an arbitrary reachable transition of

Dℓ
a
, and let Bi be an arbitrary component of components(a). Then, from Definition 6.14,

we have:

in depthDℓ
a

(Bi, ta) < 2ℓ− 1 ∨ out depthDℓ
a

(Bi, ta) < 2ℓ− 1.

The proof proceeds by two cases.

in depthDℓ
a

(Bi, ta) < 2ℓ− 1: Hence Bi cannot be in a strongly connected supercycle,

because Bi would then lie on at least one wait-for cycle, and so would have infinite
in-depth. Hence sConnViolateLoc(Bi, ta,D

ℓ
a
) by Definition 6.7, Clause 1. Hence by Defi-

nition 6.9, genViolateLoc(Bi, ta,D
ℓ
a
).

out depthDℓ
a

(Bi, ta) < 2ℓ− 1: Hence out depthDℓ
a

(Bi, ta) = d for some d < 2ℓ −

1. By Proposition 6.18, scViolateLoc(Bi, d + 1, ta,D
ℓ
a
). Hence by Definition 6.9,

genViolateLoc(Bi, ta,D
ℓ
a
).

In both cases, we have genViolateLoc(Bi, ta,D
ℓ
a
). Since Bi is an arbitrarily chosen compo-

nent of components(a), we have ∀Bi ∈ components(a) : genViolateLoc(Bi, ta,D
ℓ
a
). Hence,

by Definition 6.11, we conclude LALT (B, Q0, a, ℓ). ✷

7. OVERALL SOUNDNESS, COMPLETENESS, AND IMPLICATION RESULTS

Figure 9 gives the implication relations between our four deadlock-freedom conditions.
Each implication arrow is labeled by the Lemma that provides the corresponding re-
sult.

Lemma 6.16

LLIN (B, Q0, a, ℓ) LALT (B, Q0, a, ℓ)

GLIN (B, Q0, a) GALT (B, Q0, a)

Lemma 6.19

Lemma 5.6

Lemma 6.12

Fig. 9. Implication relations between deadlock-freedom conditions

We can use the four conditions together: if, for each interaction, we verify one of the
conditions, then we can infer deadlock-freedom, i.e., combining the conditions in this
manner is still sound w.r.t. deadlock-freedom.

Theorem 7.1 (Deadlock-freedom via GALT , GLIN , LALT , LLIN) Assume that

(1) for all s0 ∈ Q0, WB(s0) is supercycle-free, and
(2) for all interactions a of B (i.e., a ∈ γ), one of the following holds:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 30 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:30 P.C. Attie et al.

(a) GALT (B, Q0, a)
(b) GLIN (B, Q0, a)
(c) ∃ ℓ > 0 : LALT (B, Q0, a, ℓ)
(d) ∃ ℓ > 0 : LLIN (B, Q0, a, ℓ)

Then for every reachable state u of (B, Q0): WB(u) is supercycle-free, and so (B, Q0) is
free of local and global deadlock.

Proof. Immediate from Theorems 5.2, 5.7, 6.13, 6.17 and Corollary 4.13. ✷

Finally, we establish that GALT is complete w.r.t. deadlock-freedom: any system
that is free of local and global deadlock will satisfy GALT .

Theorem 7.2 (Completeness of GALT w.r.t. Deadlock-freedom) Assume that
(B, Q0) is free from local and global deadlock. Then, for all interactions a of B (i.e.,
a ∈ γ), GALT (B, Q0, a) holds.

Proof. Let a be an arbitrary interaction in γ, and let s
a
→ t be a reachable transition

of (B, Q0). Hence t is a reachable state of (B, Q0). Suppose that WB(t) contains a super-
cycle SC . Then, by Proposition 3.7, the subcomponent B′ consisting of all the atomic
components Bi ∈ SC cannot execute a transition from any state reachable from t, and
so is deadlocked. Hence (B, Q0) has a local deadlock in reachable state t, contrary to
assumption. Hence WB(t) is supercycle-free.

Let v be an arbitrary node in WB(t). By Definition 4.1, ¬scycB(s, v) holds. Hence by
Proposition 4.5, (∃ d ≥ 1 : scViolateB(v, d, t)) holds. By Definition 4.9, genViolateB(v, t)
holds. Since v is an arbitrary node in WB(t), and all Bi ∈ components(a) are
nodes in WB(t), we have (∀Bi ∈ components(a), genViolateB(Bi, t)). By Definition 5.1,
GALT (B, Q0, a) holds. Since a is an arbitrary interaction in γ, we have (∀ a ∈ γ :
GALT (B, Q0, a)), and the theorem is established. ✷

8. IMPLEMENTATION AND EXPERIMENTS

8.1. Checking that initial states are supercycle-free

Our deadlock-freedom theorem require that all initial states be sueprcycle-free. We
assume that the number of initial states is small, so that we can check each explicitly.

CHECKINITSUPERCYCLEFREE(Q0)
✄ returns true iff all initial states are supercycle-free
1. forall s0 ∈ Q0

2. compute WB(s0)
3. let U be the result of removing from WB(s0) all nodes v such that (∃ d ≥ 1 : scViolateB(v, d, t))
4. if (U is nonempty) then return(ff) ✄ s0 not supercycle-free, so return false
5. else return(tt)

Fig. 10. Procedure to check that all initial states are supercycle-free

PROPOSITION 8.1. CHECKINITSUPERCYCLEFREE(Q0) returns true iff all initial
states are supercycle-free.

Proof. Consider the execution of CHECKINITSUPERCYCLEFREE(Q0) for an arbitrary
s0 ∈ Q0.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 31 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:31

Suppose that U is nonempty. By Proposition 4.5, U is a supercycle. Since U ⊆
WB(s0), we conclude that s0 not supercycle-free, so false is the correct result in this
case.

Now suppose that U is empty. Hence every node in WB(s0) has a supercycle viola-
tion, and so by Proposition 4.4, no node of WB(s0) can be in a strongly-connected super-
cycle. Hence WB(s0) does not contain a strongly-connected supercycle. So, by Proposi-
tion 3.16, WB(s0) does not contain a supercycle. ✷

8.2. Implementation of the Linear Condition

LLIN(B, Q0) iterates over each interaction a of (B, Q0), and checks (∃ ℓ > 0 :
LLIN (B,Q0, a, ℓ)) by starting with ℓ = 1 and incrementing ℓ until either
LLIN (B,Q0, a, ℓ) is found to hold, or Dℓ

a
has become the entire system and

LLIN (B,Q0, a, ℓ) does not hold. In the latter case, LLIN (B,Q0, a, ℓ) does not hold for
any finite ℓ, and, in practice, computation would halt before Dℓ

a
had become the entire

system, due to exhaustion of resources.

LLININTDIST(B, Q0, a, ℓ) checks LLIN (B,Q0, a, ℓ) by examining every reachable
transition that executes a, and checking that the final state satisfies Definition 6.14.

LLIN(B, Q0), where B , γ(B1, . . . ,Bn)
1. forall interactions a ∈ γ
2. if (LLININT(B, Q0, a) = ff) return(ff) fi
3. endfor;
4. return(tt) ✄ return tt if check succeeds for all a ∈ γ

LLININT(B, Q0, a), where B , γ(B1, . . . ,Bn), a ∈ γ
✄ check (∃ ℓ > 0 : LLIN (B, Q0, a, ℓ))
1. ℓ← 1; ✄ start with ℓ = 1
2. while (tt)
3. if (LLININTDIST(a, ℓ) = tt) return(tt) fi; ✄ success, so return true
4. if (Dℓ

a
= γ(B1, . . . ,Bn)) return(ff) fi;✄ exhausted all subsystems, return false

5. ℓ← ℓ+ 1 ✄ increment ℓ until success or intractable or failure
6. endwhile

LLININTDIST(B, Q0, a, ℓ)

1. forall reachable transitions sa
a
→ ta of Dℓ

a

2. if (¬(∀Bi ∈ components(a) : in depthDℓ
a

(Bi, ta) < 2ℓ− 1 ∨ out depthDℓ
a

(Bi, ta) < 2ℓ− 1))
3. return(ff) ✄ check Definition 6.14
4. fi

5. endfor;
6. return(tt) ✄ return tt if check succeeds for all transitions

Fig. 11. Pseudocode for the implementation of the linear condition.

Complexity. The running time of our implementation is also O(Σa∈γ |M
ℓa
a
| ∗ |Dℓa

a
|),

where ℓa is the smallest value of ℓ for which LLIN (B,Q0, a, ℓ) holds, and where |Dℓa
a
|,

and |M ℓa
a
| are as above.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 32 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:32 P.C. Attie et al.

LALT(B, Q0) true iff (∀ a ∈ γ, ∃ ℓ > 0 : LALT (B,Q0, a, ℓ))
LALTINT(B, Q0, a) true iff (∃ ℓ > 0 : LALT (B,Q0, a, ℓ))
LALTINTDIST(B, Q0, a, ℓ) true iff LALT (B, Q0, a, ℓ)
LOCFORMVIOL(Bi,D

ℓ
a
, ta) true iff Bi has local sc-formation violation

in state ta of Dℓ
a
, i.e., genViolateLoc(Bi, ta,D

ℓ
a
) holds

LOCSCONNSCVIOL(Bi,D
ℓ
a
, ta) true iff Bi has local strong connectedness violation

in ta, i.e., sConnViolateLoc(Bi, ta,D
ℓ
a
) holds

LOCSCVIOL(Dℓ
a
, ta) compute local supercycle violations

in state ta of Dℓ
a
, i.e., scViolateLoc(v, d, ta,D

ℓ
a
) for all v, d

Fig. 12. Summary of procedures

8.3. Implementation of the AND-OR Condition

Our implementation evaluates LALT . Figure 13 presents the pseudocode, and Fig-
ure 14 presents the pseudocode for computing supercycle violations based on Dℓ

a
.

LALT(B, Q0) verifies LALT by iterating over all a ∈ γ. LALTINT(B, Q0, a) checks
(∃ ℓ > 0 : LALT (B,Q0, a, ℓ)), i.e., if LALT for a can be verified in some Dℓ

a
. We start with

ℓ = 1 since D1
a

is the smallest system, in which a supercycle-violation can be confirmed.
LALTINTDIST(B, Q0, a, ℓ) checks LALT (B,Q0, a, ℓ) for a particular ℓ. Figure 12 shows
a summary of the procedures.

Complexity. The running time of our implementation is O(Σa∈γ |M
ℓa
a
|∗|Dℓa

a
|), where

M ℓa
a

is the transition system of Dℓa
a

, and |M ℓa
a
| is the size (number of nodes plus number

of edges) of M ℓa
a

, |Dℓa
a
| is the size of the syntactic description of Dℓa

a
, and ℓa is the

smallest value of ℓ for which LALT (B,Q0, a, ℓ) holds.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 33 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:33

LALT(B, Q0), where B , γ(B1, . . . ,Bn)
✄ returns tt iff (∀ a ∈ γ, ∃ ℓ > 0 : LALT (a, ℓ))
1. forall interactions a ∈ γ
2. if (LALTINT(B, Q0, a) = ff) return(ff) fi
3. endfor;
4. return(tt) ✄ return tt if check succeeds for all a ∈ γ

LALTINT(B, Q0, a), where B , γ(B1, . . . ,Bn), a ∈ γ
✄ returns tt iff (∃ ℓ > 0 : LALT (B,Q0, a, ℓ))
1. ℓ← 1; ✄ start with ℓ = 1
2. while (tt)
3. if (LALTINTDIST(a, ℓ) = tt) return(tt) fi; ✄ success, so return true
4. if (Dℓ

a
= γ(B1, . . . ,Bn)) return(ff) fi; ✄ exhausted all subsystems, return false

5. ℓ← ℓ+ 1 ✄ increment ℓ until success or intractable or failure
6. endwhile

LALTINTDIST(B, Q0, a, ℓ)
✄ returns tt iff LALT (B, Q0, a, ℓ)

1. forall reachable transitions sa
a
→ ta of Dℓ

a

2. forall Bi ∈ components(a)
3. if ¬LOCFORMVIOL(Bi,D

ℓ
a
, ta) then return(ff) fi✄return ff if no violation for Bi

4. endfor

5. endfor;
6. return(tt) ✄return tt if all Bi ∈ components(a) violate local supercycle formation

LOCFORMVIOL(Bi,D
ℓ
a
, ta)

✄returns true iff genViolateLoc(Bi, ta,D
ℓ
a
) holds (Definition 6.9)

✄i.e., Bi has a local supercycle formation violation in state ta of subsystem Dℓ
a

1. LOCSCVIOL(Dℓ
a
, ta)

2. return(VDℓ
a
,ta [Bi] ∨ LOCSCONNSCVIOL(Bi,D

ℓ
a
, ta))

LOCSCONNSCVIOL(Bi,D
ℓ
a
, ta)

✄returns true iff sConnViolateLoc(Bi, ta,D
ℓ
a
) holds (Definition 6.7)

✄i.e., Bi has a local strong connectedness supercycle formation violation in state ta of subsystem Dℓ
a

1. remove all nodes with local supercycle violation
2. compute maximal strongly connected components of remaining wait-for graph
3. forall maximal strongly connected components C
4. if C contains a non-trivial strongly connected supercycle which contains Bi as a node
5. then return(ff)fi ✄Definition 6.7, Clause 1 holds here
6. forall wait-for paths π from Bi to the border of Dℓ

a

7. if some node of π has a local supercycle violation then return(tt) fi✄Clause 2a holds
8. forall wait-for paths π′ from the border of Dℓ

a
to Bi

9. if some node of π′ has a local supercycle violation then return(tt) fi✄Clause 2b holds
10.return(ff) ✄Definition 6.7, Clause 2 does not hold

Fig. 13. Pseudocode for the implementation of the local AND-OR condition.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 34 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:34 P.C. Attie et al.

> java -jar ldfc.jar [options] input.bip
and options are:
-condition <s> LLIN (local linear check) or LALT (local and/or check - default)

(optional)
-debug Prints useful information at each iteration of checking.

Example: selected interaction , depth length , etc.
This information could be useful in case when the condition fails.

Examples:
java -jar ldfc.jar -debug input.bip # deadlock freedom using default LALT
java -jar ldfc.jar -condition=LLIN -debug input.bip # deadlock freedom using LLIN

Fig. 15. LALT-BIP Command Line Interface

LOCSCVIOL(Dℓ
a
, ta)

✄ compute supercycle violations in state ta of Dℓ
a

✄ Postcondition: ∀ v ∈ Dℓ
a
: VDℓ

a
,ta [v] =

{

tt if ∃d ≥ 1 : scViolateLoc(v, d, ta,D
ℓ
a
)

ff otherwise
1. foundScViolate ← ff

2. forall v ∈ Dℓ
a

3. if (v is an interior interaction aa and ¬(∃Bi : aa→ Bi ∈WDℓ
a
(ta)))

4. VDℓ
a
,ta [v]← tt ✄Base case: interaction with no outgoing wait-for-edges

5. foundScViolate ← tt

6. fi

7. endfor

8. while (foundScViolate)
9. foundScViolate ← ff

10. forall v ∈ Dℓ
a
: ¬VDℓ

a
,ta [v]

11. if (v is an interior interaction aa and (∀Bi : aa→ Bi ∈WDℓ
a
(ta) : VDℓ

a
,ta [Bi]))

12. VDℓ
a
,ta [v]← tt

13. foundScViolate ← tt

14. else if (v is a component Bi and (∃ aa : Bi → aa ∈WDℓ
a
(ta) : VDℓ

a
,ta [aa]))

15. VDℓ
a
,ta [vd]← tt

16. foundScViolate ← tt

17. fi

18. endfor

19.endwhile

Fig. 14. Procedure to compute all supercycle-violations in state ta of Dℓ
a

8.4. Tool-set

We provide LALT-BIP, a suite of supporting tools that implement our method.
LALT-BIP is around ∼ 2500 Java LOC. LALT-BIP is equipped with a command line
interface (see Figure 15) that accepts a set of configuration options. It takes the name
of the input BIP file and other optional flags.

8.5. Experimentation

We evaluated LALT-BIP using several case studies including the dining philosopher
example and multiple instances of a configurable generalized Resource Allocation Sys-
tem that comprises a configurable multi token-based scheduler. The different config-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 35 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:35

Table I. Benchmarks: Dining Philosopher

Size LALT LLIN D-Finder

1, 000 0.46s 0.7s 15s
2, 000 1.4s 1.9s 60s
3, 000 2.9s 4 2m : 41s
4, 000 4.8s 7 5m : 37s
5, 000 8.3s 12 12m : 38s
6, 000 13.0s 17 17m : 48s
7, 000 17.2s 25 30m : 18s
8, 000 25.6s 34 −
9, 000 34.1s 55 −
10, 000 47s 62s −

urations of our resource allocation system subsume problems like the Milner’s sched-
uler, data arbiters and the dining philosopher with a butler problem. We benchmarked
the performance of LALT-BIP against DFinder on two benchmarks: Dining Philoso-
pher with an increasing number of philosophers and a deadlock free resource allocation
system with an increasing number of clients and resources.

All experiments were conducted on a machine with Intel (R) 8-Cores (TM) i7-6700,
CPU @ 3.40GHZ, 32GB RAM, running a CentOS Linux distribution.

8.5.1. Dining philosophers case study. We consider the traditional dining philosopher
problem as depicted in Figure 1. The Figure shows n philosophers competing on n
forks modeled in BIP.

Each philosopher component has 2 states, and each fork component has 3 states.
Thus, The total number of states is 2n × 3n. We evaluated LALT-BIP by increasing n
and applying both LALT and LLIN methods and compared against the best configu-
ration we could compute with DFinder2. DFinder2 allows for several techniques to be
applied. The most efficient one is the Incremental Positive Mapping (IPM) technique
[Bensalem et al. 2011]. IPM requires a manual partitioning of the system to exploit its
efficiency. We applied IPM on all structural partitions and we report on the best result
which is consistent with the results reported in Bensalem et al. [2011].

Table I shows the results. Both LALT and LLIN outperform the best performance
of DFinder2 by several orders of magnitude for n ≤ 3, 000. Both LALT successfully
completed the deadlock freedom check for 3, 000 ≤ n ≤ 10, 000 in less than one minute,
where DFinder2 timed out (1 Hour). LLIN required 62 seconds for n = 10, 000.

Even though LLIN is asymptotically more efficient than LALT , LALT outper-
forms LLIN in all cases. This due to the following.

— The largest subsystem that LALT had to consider was with depth ℓ = 1. This corre-
sponds to 18 = 21 × 32 states regardless of n, the number of philosophers.

— The largest subsystem that LLIN had to consider was with depth ℓ = 2. This corre-
sponds to 648 = 23 × 34 states regardless of n.

— For a given depth ℓ, LLIN is more efficient to compute than LALT . Since LALT
performs a stronger check, it often terminates for smaller depths which makes it
effectively more efficient than LLIN .

8.5.2. Resource allocation system case studies. We evaluated LALT-BIP with a multi
token-based resource allocation system. The system consists of n clients, m resources, k

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 36 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:36 P.C. Attie et al.

tokens. The number of tokens specifies the maximum number of resources that can be
in use at a given time. The system allows to specify conflicting resources. Only one re-
source out of a set of conflicting resources can be in use at a given time. For each set of
conflicting resources, we create a resource manager. Resource managers are connected
in a ring where they pass tokens to neighboring resource managers or to resources.

Given configuration specifying n, m, k, a map of requests between clients and re-
sources, and a set of sets of conflicting resources, we automatically generate a corre-
sponding BIP model.

Figures 16, 17, and 18 show BIP atomic components for client, resource and man-
ager components.

The client in Figure 16 requests resources R0 and R2 in sequence. It has 5 ports.
Ports SR0 and SR2 send requests for resources R0 and R2, respectively. Ports RG0 and
RG2 receive grants for resources R0 and R2, respectively. Port rel releases all resources.
The behavior of the client depends on its request sequence.

start

SR0 RG0 SR2 RG2

rel

Client

SR0 RG0 SR2 RG2 rel

Fig. 16. Client

Figure 17 shows a resource component. A resource component waits for a request
from a connected client on port RR. Once a request is received, the resource compo-
nent transitions to a state where it is ready to receive a token from the corresponding
resource manager using port RTT . The resource transitions to a state where it grants
the client request using port STC and waits until it is released on port done. There, it
returns the token back to the resource manager and transitions to the start state.

start

RR RTT STC done

STT

ResourceRR STC done

RTT STT

Fig. 17. Resource

Figure 18 shows a resource manager. A resource manager M has four states.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 37 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:37

— State T denotes that M has a token. M may send the token to either (1) a resource on
port STR and transition to state TwR (token with resource), or (2) the next resource
manager on port STT and transition to state N (no token).

— State N denotes that N has no token. It may receive a token from a neighboring
resource manager in the ring on port RTT and transition to state T .

— State TwR denotes that M has already passed a token to one of its resources. M
may either receive (1) the assigned token back from the resource using port RTR
and transition to state T , or (2) another token from a neighboring manager using
port RTT and transition to state TTwR (token and token with resource).

— State TTwR denotes that M has a token and has already passed a token to one of
its resources. In this state M can not send the token it has to a resource it manages
to respect the conflict constraint. M may send the token to the next manager on port
STT and transition back to state TwR.

T

start

N

TwR TTwR

STT

STT

STR RTR

RTT

STT

RM

STTRTT

STR RTR

Fig. 18. Token Resource Manager

The connections between a resource manager M and its resources on ports STR
and RTR specify that the resources are conflicting. A system should have at least x
resource managers where x is the maximum between the number of sets of conflicting
resources and k. Note that k resource managers start at state T to denote the k tokens;
the rest start at state N .

Figure 19 shows a configuration system with 5 clients and 5 resources where:

— Client C0 requires resource R0 then R2,
— Client C1 requires resource R2 then R0,
— Client C2 requires resource R1,
— Client C3 requires resource R3, and
— Client C4 requires resource R4.

The system has three resource managers to specify the conflicting resources. RM01

manages conflicting resources {R0, R1}. RM23 managers conflicting resources {R2, R3}.
RM4 manages resource R4.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 38 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:38 P.C. Attie et al.

C0

SR0 RG0 SR2 RG2 rel

C1

SR2 RG2 SR0 RG0 rel

C2

SR1 RG1 rel

C3

SR3 RG3 rel

C4

SR4 RG4 rel

R0

RR STC done

RTT STT

R1

RR STC done

RTT STT

R2

RR STC done

RTT STT

R3

RR STC done

RTT STT

R4

RR STC done

RTT STT

RM01

STTRTT

STR RTR

RM23

STTRTT

STR RTR

RM4

STTRTT

STR RTR

Fig. 19. Conflict-Resource Allocation System

We evaluated LALT-BIP with various configurations. We highlight several lessons
learned for specific systems as follows.

Lesson 1:. LALT verifies freedom from global and local deadlock where DFinder2
can only verify freedom from global deadlock. Consider a system with 5 clients, 3 to-
kens, and 5 resources. Clients request resources 〈0, 2〉, 〈2, 0〉, 〈1〉, 〈3〉, and 〈4〉, respec-
tively. Resource sets {0, 1}, {2, 3} are conflicting. This system clearly is a global dead-
lock free. It has a local deadlock where client C0 has resource 0 and client C1 has
resource 2. DFinder qualitatively can not detect such a local deadlock while LALT
successfully does.

Lesson 2:. LALT is more complete than both LLIN and DFinder2. For example,
it can verify global and local deadlock freedom in cases where LLIN fails. Con-
sider a system with 5 clients, 2 tokens, and 5 resources. Clients request resources
〈0, 2〉, 〈0, 2〉, 〈1〉, 〈3〉, and 〈4〉, respectively. Resource sets {0, 1}, {2, 3, 4} are conflicting.
This system is global and local deadlock free. Both DFinder2 and LLIN report that
the system might contain a deadlock. LALT successfully reports that the system is
both global and local deadlock free.

Lesson 3:. Our work can be extended to detect conspiracies [Attie et al. 1993]. For
example, consider a system with 5 clients, 2 tokens, and 5 resources. Clients request
resources 〈0, 1〉, 〈1, 0〉, 〈2〉, 〈3〉, and 〈4〉, respectively. Resource sets {0, 1}, {2, 3, 4} are con-
flicting. Client C0 may block forever in case it acquires resource 0 because resource 0 is
conflicting with resource 1. However, it is not possible to find a deadlocked subsystem
containing C0 and resources 0 and 1 since that will also have to include the resource
manager M01 managing conflicting resources 0 and 1. The latter can always exchange
the second token with the neighboring resource managers.

An extension of our work that consider subsystem boundaries at ports and ab-
stracts port enablement conditions with free Boolean variables can help detect such
scenarios.

Benchmarking:. We evaluated the performance of LALT on a deadlock free system
with the following configuration.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 39 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:39

Table II. Benchmarks: Time required for LALT on the resource allocation system

Size 10 12 14 16 18 20 22 24 26 28 30
Time (sec) 148 169 189 230 254 277 298 318 351 374 430

— n clients each with 3 states, n resources each with 5 states, and n tokens,
— Client Ci, 0 ≤ i < n requests resource i, and
— No resources are in conflict, hence we have n resource managers each with 4 states.

The system has a total of 4n × 3n × 5n states. DFinder2 timed out within seven
hours for n = 10. LLIN had to increase the subsystem up to the whole system and also
timed out within seven hours for n = 10. LALT was able to verify deadlock freedom.
It has to check subsystems with 12 components out of 3 × n components regardless
of n. This resulted from inspecting subsystems corresponding to a depth ℓ = 2 with
≤ 23, 040, 000 = 46 × 32 × 54 states regardless of n. The numbers in Table II show a
linear increase in time required to check deadlock freedom using LALT with respect
to n. This indicates that the number of subsystems to check is proportional to n.

Our resource allocation system subsumes the token based Milner scheduler [Milner
1989] which is essentially a token ring with precisely one token present [Antonino et al.
2016]. [Antonino et al. 2016] present a technique that fails to prove deadlock freedom
for Milner Scheduler because it requires a large subset of the system, while LALT
succeeds.

9. DISCUSSION, RELATED WORK, AND FURTHER WORK

9.1. Related work.

The notions of wait-for-graph and supercycle [Attie and Chockler 2005; Attie and
Emerson 1998] were initially defined for a shared memory program P = P1 ‖· · ·‖PK in
pairwise normal form [Attie 2016b; Attie 2016a]: a binary symmetric relation I spec-
ifies the directly interacting pairs (“neighbors”) {Pi, Pj} If Pi has neighbors Pj and
Pk, then the code in Pi that interacts with Pj is expressed separately from the code
in Pi that interacts with Pk. These synchronization codes are executed synchronously
and atomically, so the grain of atomicity is proportional to the degree of I. Attie and
Chockler [2005] give two polynomial time methods for (local and global) deadlock free-
dom. The first checks subsystems consisting of three processes. The second computes
the wait-for-graphs of all pair subsystems Pi ‖ Pj , and takes their union, for all pairs
and all reachable states of each pair. The first method considers only wait-for-paths
of length ≤ 2. The second method is prone to false negatives, because wait-for edges
generated by different states are all merged together, which can result in spurious
supercycles.

Gössler and Sifakis [2003] use a BIP-like formalism, Interaction Models. They
present a criterion for global deadlock freedom, based on an and-or graph with com-
ponents and constraints as the two sets of nodes. A constraint gives the condition un-
der which a component is blocked. Edges are labeled with conjuncts of the constraints.
Deadlock freedom is checked by traversing every cycle, taking the conjunction of all the
conditions labeling its edges, and verifying that this conjunction is always false, i.e.,
verifying the absence of cyclical blocking. No complexity bounds are given. Martens
and Majster-Cederbaum [2012] present a polynomial time checkable deadlock free-
dom condition based on structural restrictions: “the communication structure between
the components is given by a tree.” This restriction allows them to analyze only pair
systems. Aldini and Bernardo [2003] use a formalism based on process algebra. They

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 40 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:40 P.C. Attie et al.

check deadlock by analyzing cycles in the connections between software components,
and claim scalability, but no complexity bounds are given.

Roscoe and Dathi [1987] present several rules for freedom of global deadlock of
“triple disjoint” (no action involves > 2 processes) CSP concurrent programs. The ba-
sis for these rules is to first check that each individual process is deadlock free (i.e.,
the network is “busy”), and then to define a “variant function” that maps the state
of each process to a partially ordered set. The first rule requires to establish that, if
Pi waits for Pj , then the value of Pi’s state is greater than the value of Pj ’s state.
Since every process is blocked in a global deadlock, one can then construct an infi-
nite sequence of processes with strictly decreasing values, which are therefore all dis-
tinct. This cannot happen in a finite network, and hence some process is not blocked.
They treat several examples, including a self-timed systolic array (in 2 and 3 dimen-
sions), dining philosophers, and a message switching network. They generalize the
first rule to exploit “disconnecting edges” (whose removal partitions the network into
disconnected components) to decompose the proof of deadlock freedom into showing
that each disconnected component is deadlock-free, and also to weaken the restriction
on the variant function so that it only has to decrease for at least one edge on each
wait-for cycle. Brookes and Roscoe [1991] also provide criteria for deadlock freedom
of triple-disjoint CSP programs, and use the same technical framework as Roscoe and
Dathi [1987]. However, they do not use variant functions, but show that, in a busy net-
work, a deadlock implies the existence of a wait-for cycle. They give many examples,
and demonstrate the absence of wait-for cycles in each example, by ad-hoc reasoning.
Finally, they give a deadlock freedom rule that exploits disconnecting edges, similar
to that of Roscoe and Dathi [1987]. In both of these papers, the wait-for relations are
defined by examining a pair of processes at a time: Pi waits for Pj iff Pi offers an action
to Pj which Pj is not willing to participate in.

Martin [1996] applies the results of Roscoe and Dathi [1987] and Brookes and
Roscoe [1991] to formulate deadlock-freedom design rules for several classes of CSP
concurrent programs: cyclic processes, client-server protocols, and resource allocation
protocols. He also introduces the notion of “state dependence digraph” (SDD), whose
nodes are local states of individual processes, and whose edges are wait-for relations
between processes in particular local states. An acyclic SDD implies deadlock-freedom.
A cyclic SDD does not imply deadlock, however, since the cycle may be “spurious”: the
local states along the cycle may not be reachable at the same time, and so the cycle can-
not give rise to an actual deadlock during execution. Hence the SDD approach cannot
deal with “non-hereditary” deadlock freedom, i.e., a deadlock free system that contains
a deadlock prone subsystem. Consider, e.g.,, the dining philosophers with a butler so-
lution; removing the butler leaves a deadlock prone subsystem. Antonino et al. [2016]
takes the SDD approach and improves its accuracy by checking for mutual reachability
of pairs of local states, and also eliminating local states and pairs of local states, where
action enablement can be verified locally. These checks are formulated as a Boolean
formula which is then sent to a SAT solver. Their method is able to verify deadlock
freedom of dining philosophers with a butler, whereas our method timed out, since the
subsystems on which LALT (B,Q0, a, ℓ) is evaluated becomes the entire system. On
the other hand, our approach succeeded in quickly verifying deadlock-freedom of the
resource allocation example, whereas the method of Antonino et al. [2016] failed for
Milner’s token based scheduler, which is a special case of our resource allocation ex-
ample. An intriguing topic for future work is to attempt to combine the two methods,
to obtain the advantages of both.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 41 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:41

We compared our implementation LALT-BIP to D-Finder 2 [Bensalem et al. 2011].
D-Finder 2 computes a finite-state abstraction for each component, which it uses to
compute a global invariant I. It then checks if I implies deadlock freedom. Unlike
LALT-BIP, D-Finder 2 handles infinite state systems. However, LALT-BIP had supe-
rior running time for dining philosophers and resource controller (both finite-state).

All the above methods (except Attie and Chockler [2005]) verify global (and not lo-
cal) deadlock-freedom. Our method verifies local deadlock-freedom, which subsumes
global deadlock-freedom as a special case. Also, our approach makes no structural
restriction at all on the system being checked for deadlock. Our method checks for
the absence of supercycles, which are a sound and complete characterization of dead-
lock. Moreover, the LALT condition is complete w.r.t. the occurrence of a supercycle
wholly within the subsystem being checked, and the GALT condition is complete w.r.t.
freedom from local and global deadlock, as given by Theorem 7.2. None of the above
papers give a completeness result similar to Theorem 7.2. Hence, the only source of
incompleteness in our method is that of computational limitation: if the subsystem be-
ing checked becomes too large before the LALT condition is verified. If computational
resources are not exhausted, then our method can keep checking until the subsystem
being checked is the entire system, at which point LALT coincides with GALT , which
is sound and complete for local deadlock (Prop. 4.6, Def. 4.9, and Def. 5.1).

9.2. Discussion

Our approach has the following advantages:

— Local and global deadlock: our method shows that no subset of processes can be
deadlocked, i.e., absence of both local and global deadlock.

— Check works for realistic formalism: by applying the approach to BIP, we provide an
efficient deadlock-freedom check within a formalism from which efficient distributed
implementations can be generated [Bonakdarpour et al. 2010].

— Locality: if a component Bi is modified, or is added to an existing system, then
LALT (B,Q0, a, ℓ) only has to be re-checked for Bi and components within distance ℓ
of Bi. A condition whose evaluation considers the entire system at once, e.g., [Aldini
and Bernardo 2003; Bensalem et al. 2011; Gössler and Sifakis 2003] would have to
be re-checked for the entire system.

— Easily parallelizable: since the checking of each subsystem Dℓ
a is independent of the

others, the checks can be carried out in parallel. Hence our method can be easily
parallelized and distributed, for speedup, if needed. Alternatively, performing the
checks sequentially minimizes the amount of memory needed.

— Framework aspect: supercycles and in/out-depth provide a framework for deadlock-
freedom. Conditions more general and/or discriminating than the one presented
here should be devisable in this framework. This is a topic for future work. In ad-
dition, our approach is applicable to any model of concurrency in which our notions
of wait-for graph and supercycle can be defined. For example, Attie and Chockler
[2005] give two methods for verifying global and local deadlock freedom of shared-
memory concurrent programs in pairwise normal form, as noted above. Hence, our
methods are applicable to other formalisms such as CSP, CCS, I/O Automata, etc.

9.3. Further work.

Our implementation uses explicit state enumeration. Using BDD’s may improve the
running time when LALT (B,Q0, a, ℓ) holds only for large ℓ. Another potential method
for improving the running time is to use SAT solving, cf. Antonino et al. [2016]. An

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 42 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A:42 P.C. Attie et al.

enabled port p enables all interactions containing p. Deadlock-freedom conditions
based on ports could exploit this interdependence among interaction enablement.
Our implementation should produce counterexamples when a system fails to satisfy
LALT (B,Q0, a, ℓ). These can be used to manually modify the system to eliminate a
possible deadlock. Also, when LALT (B,Q0, a, ℓ) fails to verify deadlock-freedom, we
increment ℓ, in effect extending the subsystem being checked “in all directions” away
from a (in the structure graph). A counterexample may provide guidance to a more
discriminating extension, when adds only a few components, so we now consider sub-
systems whose boundary has varying distance from a, in the structure graph. This
has the benefit that we might verify deadlock freedom using a smaller subsystem than
with our current approach. Design rules for ensuring LALT (B,Q0, a, ℓ) will help users
to produce deadlock-free systems, and also to interpret counterexamples. A fault may
create a deadlock, i.e., a supercycle, by creating wait-for-edges that would not normally
arise. Tolerating a fault that creates up to f such spurious wait-for-edges requires that
there do not arise during normal (fault-free) operation subgraphs of WB(s) that can
be made into a supercycle by adding f edges. We will investigate criteria for prevent-
ing formation of such subgraphs. Methods for evaluating LALT (B,Q0, a, ℓ) on infinite
state systems will be devised, e.g.,, by extracting proof obligations and verifying using
SMT solvers. We will extend our method to Dynamic BIP, [Bozga et al. 2012], where
participants can add and remove interactions at run time.

REFERENCES

Alessandro Aldini and Marco Bernardo. 2003. A General Approach to Deadlock Freedom Verification for
Software Architectures. FME 2805 (2003), 658–677.

Pedro Antonino, Thomas Gibson-Robinson, and A. W. Roscoe. 2016. Efficient Deadlock-Freedom
Checking Using Local Analysis and SAT Solving. In Integrated Formal Methods - 12th In-
ternational Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings. 345–360.
DOI:http://dx.doi.org/10.1007/978-3-319-33693-0 22

P.C. Attie, N. Francez, and O. Grumberg. 1993. Fairness and Hyperfairness in Multiparty Interactions.
Distributed Computing 6 (1993), 245–254.

Paul C. Attie. 2016a. Finite-state concurrent programs can be expressed in pairwise normal form. Theoreti-
cal Computer Science 619 (2016), 1 – 31. DOI:http://dx.doi.org/10.1016/j.tcs.2015.11.032

Paul C. Attie. 2016b. Synthesis of large dynamic concurrent programs from dynamic specifications. Formal
Methods in System Design (2016), 1–54. DOI:http://dx.doi.org/10.1007/s10703-016-0252-9

Paul C. Attie, Saddek Bensalem, Marius Bozga, Mohamad Jaber, Joseph Sifakis, and Fadi A. Zaraket. 2013.
An Abstract Framework for Deadlock Prevention in BIP. In Formal Techniques for Distributed Systems
- Joint IFIP WG 6.1 International Conference, FMOODS/FORTE 2013, Held as Part of the 8th Interna-
tional Federated Conference on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy, June
3-5, 2013. Proceedings. 161–177. DOI:http://dx.doi.org/10.1007/978-3-642-38592-6 12

Paul C. Attie and H. Chockler. 2005. Efficiently Verifiable Conditions for Deadlock-freedom of Large Con-
current Programs. In VMCAI. France.

Paul C. Attie and E. Allen Emerson. 1998. Synthesis of Concurrent Systems with Many Similar Processes.
TOPLAS 20, 1 (Jan. 1998), 51–115.

Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung Nguyen, Joseph Sifakis, and Rongjie Yan.
2011. D-Finder 2: Towards Efficient Correctness of Incremental Design. In NASA Formal Methods. 453–
458.

Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph Sifakis. 2010. From High-
level Component-based Models to Distributed Implementations. In EMSOFT. 209–218.

Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. 2012. Modeling Dynamic Architectures
Using Dy-BIP. In Software Composition. 1–16.

S.D. Brookes and A.W. Roscoe. 1991. Deadlock analysis in networks of communicating processes. Distributed
Computing 4 (1991), 209–230. Issue 4.

Gregor Gössler and Joseph Sifakis. 2003. Component-based Construction of Deadlock-free Systems. In
FSTTCS. Springer, 420–433.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 43 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Global and Local Deadlock Freedom in BIP A:43

Moritz Martens and Mila Majster-Cederbaum. 2012. Deadlock-freedom in component systems with architec-
tural constraints. FMSD 41 (2012), 129–177. Issue 2. DOI:http://dx.doi.org/10.1007/s10703-012-0160-6

Jeremy Malcolm Randolph Martin. 1996. The Design and Construction of Deadlock-Free Concurrent Sys-
tems. Ph.D. Dissertation. The University of Buckingham.

Robin Milner. 1989. Communication and concurrency. Prentice Hall.

Christos H. Papadimitriou. 1994. Computational complexity. Addison-Wesley.

A.W. Roscoe and Naiem Dathi. 1987. The pursuit of deadlock freedom. Information and Computation 75, 3
(1987), 289 – 327. DOI:http://dx.doi.org/10.1016/0890-5401(87)90004-6

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Page 44 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Differences between the conference version and the submission.

• The conference version gives a restricted “linear” criterion for local and global deadlock

freedom which is not complete for local and global deadlock-freedom. The submission gives

an “alternating” AND-OR criterion, which is complete for local and global deadlock freedom.

The linear criterion can fail in cases where the alternating criterion succeeds in verifying

deadlock freedom. The linear condition is actually a special case of the AND-OR condition.

• The submission provides new results concerning the graph-theoretic properties of the waiting

patterns that constitute a local or global deadlock.

• Submission provides experiments that are new and different from the conference version, and

which, among other results, give an example where the linear criterion fails while the AND-

OR criterion succeeds. Experiments also deal with more challenging examples than in the

conference version, including a generalization of Milner’s token-based scheduler.

Page 45 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework

for Deadlock Prevention in BIP�

Paul C. Attie1, Saddek Bensalem2, Marius Bozga2, Mohamad Jaber1,
Joseph Sifakis3, and Fadi A. Zaraket4

1 Department of Computer Science, American University of Beirut, Beirut, Lebanon
2 UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France

3 Rigorous System Design Laboratory, EPFL, Lausanne, Switzerland
4 Department of Electrical and Computer Engineering,

American University of Beirut, Beirut, Lebanon

Abstract. We present a sound but incomplete criterion for checking
deadlock freedom of finite state systems expressed in BIP: a component-
based framework for the construction of complex distributed systems.
Since deciding deadlock-freedom for finite-state concurrent systems is
PSPACE-complete, our criterion gives up completeness in return for
tractability of evaluation. Our criterion can be evaluated by model-
checking subsystems of the overall large system. The size of these sub-
systems depends only on the local topology of direct interaction between
components, and not on the number of components in the overall system.

We present two experiments, in which our method compares favorably
with existing approaches. For example, in verifying deadlock freedom of
dining philosphers, our method shows linear increase in computation time
with the number of philosophers, whereas other methods (even those that
use abstraction) show super-linear increase, due to state-explosion.

1 Introduction

Deadlock freedom is a crucial property of concurrent and distributed systems.
With increasing system complexity, the challenge of assuring deadlock freedom
and other correctness properties becomes even greater. In contrast to the alter-
natives of (1) deadlock detection and recovery, and (2) deadlock avoidance, we
advocate deadlock prevention: design the system so that deadlocks do not occur.

Deciding deadlock freedom of finite-state concurrent programs is PSPACE-
complete in general [15, chapter 19]. To achieve tractability, we can either make
our deadlock freedom check incomplete (sufficient but not necessary), or we can
restrict the systems that we check to special cases. We choose the first option: a
system meeting our condition is free of both local and global deadlocks, while a
system which fails to meet our condition may or may not be deadlock free.

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
no. 288175 (CERTAINTY) and no 257414 (ASCENS).

D. Beyer and M. Boreale (Eds.): FMOODS/FORTE 2013, LNCS 7892, pp. 161–177, 2013.
c© IFIP International Federation for Information Processing 2013

Page 46 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

162 P.C. Attie et al.

We generalize previous works [2–4] by removing the requirement that interac-
tion between processes be expressed pairwise, and also by applying to BIP [6], a
framework from which efficient distributed code can be generated. In contrast,
the model of concurrency in [2–4] requires shared memory read-modify-write
operations with a large grain of atomicity. The full paper, including proofs for
all theorems, is available on-line, as is our implementation of the method.

2 BIP – Behavior Interaction Priority

BIP is a component framework for constructing systems by superposing three
layers of modeling: Behavior, Interaction, and Priority. A technical treatment
of priority is beyond the scope of this paper. Adding priorities never introduces
a deadlock, since priority enforces a choice between possible transitions from
a state, and deadlock-freedom means that there is at least one transition from
every (reachable) state. Hence if a BIP system without priorities is deadlock-free,
then the same system with priorities added will also be deadlock-free.

Definition 1 (Atomic Component). An atomic component Bi is a labeled
transition system represented by a triple (Qi, Pi,→i) where Qi is a set of states,
Pi is a set of communication ports, and →i ⊆ Qi × Pi ×Qi is a set of possible
transitions, each labeled by some port.

For states si, ti ∈ Qi and port pi ∈ Pi, write si
pi→i ti, iff (si, pi, ti) ∈→i. When

pi is irrelevant, write si →i ti. Similarly, si
pi→i means that there exists ti ∈ Qi

such that si
pi→i ti. In this case, pi is enabled in state si. Ports are used for

communication between different components, as discussed below.
In practice, we describe the transition system using some syntax, e.g., involv-

ing variables. We abstract away from issues of syntactic description since we are
only interested in enablement of ports and actions. We assume that enablement
of a port depends only on the local state of a component. In particular, it cannot
depend on the state of other components. This is a restriction on BIP, and we
defer to subsequent work how to lift this restriction. So, we assume the existence
of a predicate enbipi

that holds in state si of component Bi iff port pi is enabled

in si, i.e., si(enb
i
pi
) = true iff si

pi→i.
Figure 1(a) shows atomic components for a philospher P and a fork F in dining

philosophers. A philosopher P that is hungry (in state h) can eat by executing get
and moving to state e (eating). From e, P releases its forks by executing release
and moving back to h. Adding the thinking state does not change the deadlock
behaviour of the system, since the thinking to hungry transition is internal to
P , and so we omit it. A fork F is taken by either: (1) the left philosopher
(transition get l) and so moves to state ul (used by left philosopher), or (2)
the right philosopher (transition getr) and so moves to state ur (used by right
philosopher). From state ur (resp. ul), F is released by the right philosopher
(resp. left philosopher) and so moves back to state f (free).

Page 47 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework for Deadlock Prevention in BIP 163

Fork F

Philosopher P

release

get

e h

release get

fur ul

user use l

free lfreer

user use l

freer
free l

(a) Philosopher P and fork F atomic
components.

ge
t

user

use l

re
le
as
e

release

get

get

release
release

get

use l

free l

user
freer

P0

P3

P2

P1

F0 F1

F2F3

use l
free l

freer
user

use l

user

free l

freer

freer

free l

(b) Dining philosophers composite com-
ponent with four philosophers.

Fig. 1. Dining philosophers

Definition 2 (Interaction). For a given system built from a set of n atomic
components {Bi = (Qi, Pi,→i)}ni=1, we require that their respective sets of ports
are pairwise disjoint, i.e., for all i, j such that i, j ∈ {1..n} ∧ i �= j, we have
Pi∩Pj = ∅. An interaction is a set of ports not containing two or more ports from
the same component. That is, for an interaction a we have a ⊆ P ∧(∀i ∈ {1..n} :
|a ∩ Pi| ≤ 1), where P =

⋃n
i=1 Pi is the set of all ports in the system. When we

write a = {pi}i∈I , we assume that pi ∈ Pi for all i ∈ I, where I ⊆ {1..n}.
Execution of an interaction a involves all the components which have ports in a.

Definition 3 (Composite Component). A composite component (or simply
component) B � γ(B1, . . . , Bn) is defined by a composition operator parameter-
ized by a set of interactions γ ⊆ 2P . B has a transition system (Q, γ,→), where
Q = Q1 × · · · ×Qn and →⊆ Q× γ ×Q is the least set of transitions satisfying
the rule

a = {pi}i∈I ∈ γ ∀i ∈ I : si
pi→i ti ∀i �∈ I : si = ti

〈〈〈s1, . . . , sn〉〉〉 a→ 〈〈〈t1, . . . , tn〉〉〉
This inference rule says that a composite component B = γ(B1, . . . , Bn) can
execute an interaction a ∈ γ, iff for each port pi ∈ a, the corresponding atomic
component Bi can execute a transition labeled with pi; the states of components
that do not participate in the interaction stay unchanged. Given an interaction
a = {pi}i∈I , we denote by Ca the set of atomic components participating in a,
formally: Ca = {Bi | pi ∈ a}. Figure 1(b) shows a composite component consist-
ing of four philosophers and the four forks between them. Each philosopher and

Page 48 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

164 P.C. Attie et al.

its two neighboring forks share two interactions: Get = {get , usel, user} in which
the philosopher obtains the forks, and Rel = {release, freel, freer} in which the
philosopher releases the forks.

Definition 4 (Interaction enablement). An atomic component Bi =

(Qi, Pi,→i) enables interaction a in state si iff si
pi→i, where pi = Pi ∩ a is

the port of Bi involved in a. Let B = γ(B1, . . . , Bn) be a composite component,
and let s = 〈〈〈s1, . . . , sn〉〉〉 be a state of B. Then B enables a in s iff every Bi ∈ Ca

enables a in si.

The definition of interaction enablement is a consequence of Definition 3. Inter-
action a being enabled in state s means that executing a is one of the possible
transitions that can be taken from s. Let enbia denote the enablement condition
for interaction a in component Bi. By definition, enbia = enbipi

where pi = a∩Pi.

Definition 5 (BIP System). Let B = γ(B1, . . . , Bn) be a composite compo-
nent with transition system (Q, γ,→), and let Q0 ⊆ Q be a set of initial states.
Then (B,Q0) is a BIP system.

Figure 1(b) gives a BIP-system with philosophers initially in state h (hungry)
and forks initially in state f (free).

Definition 6 (Execution). Let (B,Q0) be a BIP system with transition system
(Q, γ,→). Let ρ = s0a1s1 . . . si−1aisi . . . be an alternating sequence of states of
B and interactions of B. Then ρ is an execution of (B,Q0) iff (1) s0 ∈ Q0, and

(2) ∀i > 0 : si−1
ai→ si.

A state or transition that occurs in some execution is called reachable.

Definition 7 (State Projection). Let (B,Q0) be a BIP system where B =
γ(B1, . . . , Bn) and let s = 〈〈〈s1, . . . , sn〉〉〉 be a state of (B,Q0). Let
{Bj1 , . . . , Bjk} ⊆ {B1, . . . , Bn}. Then s�{Bj1 , . . . , Bjk} � 〈〈〈sj1 , . . . , sjk〉〉〉. For
a single Bi, we write s�Bi = si. We extend state projection to sets of states
element-wise.

Definition 8 (Subcomponent). Let B � γ(B1, . . . , Bn) be a composite com-
ponent, and let {Bj1 , . . . , Bjk} be a subset of {B1, . . . , Bn}. Let P ′ = Pj1 ∪ · · · ∪
Pjk , i.e., the union of the ports of {Bj1 , . . . , Bjk}. Then the subcomponent B′ of
B based on {Bj1 , . . . , Bjk} is as follows:

1. γ′ � {a ∩ P ′ | a ∈ γ ∧ a ∩ P ′ �= ∅}
2. B′ � γ′(Bj1 , . . . , Bjk)

That is, γ′ consists of those interactions in γ that have at least one partici-
pant in {Bj1 , . . . , Bjk}, and restricted to the participants in {Bj1 , . . . , Bjk}, i.e.,
participants not in {Bj1 , . . . , Bjk} are removed.

We write s�B′ to indicate state projection onto B′, and define s�B′ �
s�{Bj1 , . . . , Bjk}, where Bj1 , . . . , Bjk are the atomic components in B′.

Page 49 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework for Deadlock Prevention in BIP 165

Definition 9 (Subsystem). Let (B,Q0) be a BIP system where B =
γ(B1, . . . , Bn), and let {Bj1 , . . . , Bjk} be a subset of {B1, . . . , Bn}. Then the
subsystem (B′, Q′

0) of (B,Q0) based on {Bj1 , . . . , Bjk} is as follows:

1. B′ is the subcomponent of B based on {Bj1 , . . . , Bjk}
2. Q′

0 = Q0�{Bj1 , . . . , Bjk}
Definition 10 (Execution Projection). Let (B,Q0) be a BIP system where
B = γ(B1, . . . , Bn), and let (B′, Q′

0), with B′ = γ′(Bj1 , . . . , Bjk) be the sub-
system of (B,Q0) based on {Bj1 , . . . , Bjk}. Let ρ = s0a1s1 . . . si−1aisi . . . be an
execution of (B,Q0). Then, ρ�(B′, Q′

0), the projection of ρ onto (B′, Q′
0), is the

sequence resulting from:

1. replacing each si by si�{Bj1 , . . . , Bjk}, i.e., replacing each state by its pro-
jection onto {Bj1 , . . . , Bjk}

2. removing all aisi where ai �∈ γ′

Proposition 1 (Execution Projection). Let (B,Q0) be a BIP system where
B = γ(B1, . . . , Bn), and let (B′, Q′

0), with B′ = γ′(Bj1 , . . . , Bjk) be the sub-
system of (B,Q0) based on {Bj1 , . . . , Bjk}. Let ρ = s0a1s1 . . . si−1aisi . . . be an
execution of (B,Q0). Then, ρ�(B′, Q′

0) is an execution of (B′, Q′
0).

Corollary 1. Let (B′, Q′
0) be a subsystem of (B,Q0). Let s be a reachable state

of (B,Q0). Then s�B′ is a reachable state of (B′, Q′
0). Let s

a→ t be a reachable

transition of (B,Q0), and let a be an interaction of (B′, Q′
0). Then s�B′ a→ t�B′

is a reachable transition of (B′, Q′
0).

To avoid tedious repetition, we fix, for the rest of the paper, an arbitrary BIP-
system (B,Q0), with B � γ(B1, . . . , Bn), and transition system (Q, γ,→).

3 Characterizing Deadlock-Freedom

Definition 11 (Deadlock-freedom). A BIP-system (B,Q0) is deadlock-free
iff in every reachable state s of (B,Q0), some interaction a is enabled.

We assume in the sequel that each individual component Bi is deadlock-free,
when considered in isolation, with respect to the set of initial states Q0�Bi.

3.1 Wait-For Graphs

The wait-for-graph for a state s is a directed bipartite and-or graph which con-
tains as nodes the atomic components B1, . . . , Bn, and all the interactions γ.
Edges in the wait-for-graph are from a Bi to all the interactions that Bi enables
(in s), and from an interaction a to all the components that participate in a and
which do not enable it (in s).

Page 50 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

166 P.C. Attie et al.

Definition 12 (Wait-for-graph WB(s)). Let B = γ(B1, . . . , Bn) be a BIP
composite component, and let s = 〈〈〈s1, . . . , sn〉〉〉 be an arbitrary state of B. The
wait-for-graph WB(s) of s is a directed bipartite and-or graph, where

1. the nodes of WB(s) are as follows:

(a) the and-nodes are the atomic components Bi, i ∈ {1..n},
(b) the or-nodes are the interactions a ∈ γ,

2. there is an edge in WB(s) from Bi to every node a such that Bi ∈ Ca and
si(enb

i
a) = true, i.e., from Bi to every interaction which Bi enables in si,

3. there is an edge in WB(s) from a to every Bi such that Bi ∈ Ca and
si(enb

i
a) = false, i.e., from a to every component Bi which participates in a

but does not enable it, in state si.

A component Bi is an and-node since all of its successor actions (or-nodes)
must be disabled for Bi to be incapable of executing. An interaction a is an
or-node since it is disabled if any of its participant components do not enable
it. An edge (path) in a wait-for-graph is called a wait-for-edge (wait-for-path).
Write a → Bi (Bi → a respectively) for a wait-for-edge from a to Bi (Bi to a
respectively). We abuse notation by writing e ∈ WB(s) to indicate that e (either
a → Bi or Bi → a) is an edge in WB(s). Also B → a → B′ ∈ WB(s) for
B → a ∈ WB(s) ∧ a → B′ ∈ WB(s), i.e., for a wait-for-path of length 2, and
similarly for longer wait-for-paths.

Consider the dining philosophers system given in Figure 1. Figure 2(a) shows
its wait-for-graph in its sole initial state. Figure 2(b) shows the wait-for-graph
after execution of get0. Edges from components to interactions are shown solid,
and edges from interactions to components are shown dashed.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

(a) Wait-for-graph in initial state.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

(b) Wait-for-graph after execution of get0.

Fig. 2. Example wait-for-graphs for dining philosophers system of Figure 1

Page 51 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework for Deadlock Prevention in BIP 167

3.2 Supercycles and Deadlock-Freedom

We characterize a deadlock as the existence in the wait-for-graph of a graph-
theoretic construct that we call a supercycle:

Definition 13 (Supercycle). Let B = γ(B1, . . . , Bn) be a composite compo-
nent and s be a state of B. A subgraph SC of WB(s) is a supercycle in WB(s)
if and only if all of the following hold:

1. SC is nonempty, i.e., contains at least one node,
2. if Bi is a node in SC, then for all interactions a such that there is an edge
in WB(s) from Bi to a:

(a) a is a node in SC, and
(b) there is an edge in SC from Bi to a,

that is, Bi → a ∈ WB(s) implies Bi → a ∈ SC,
3. if a is a node in SC, then there exists a Bj such that:

(a) Bj is a node in SC, and
(b) there is an edge from a to Bj in WB(s), and
(c) there is an edge from a to Bj in SC,

that is, a ∈ SC implies ∃Bj : a → Bj ∈ WB(s) ∧ a → Bj ∈ SC,

where a ∈ SC means that a is a node in SC, etc. WB(s) is supercycle-free iff
there does not exist a supercycle SC in WB(s). In this case, say that state s is
supercycle-free.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

Fig. 3. Example supercycle for dining philosophers system of Figure 1

Figure 3 shows an example supercycle (with boldened edges) for the dining
philosophers system of Figure 1. P0 waits for (enables) a single interaction, Get0.
Get0 waits for (is disabled by) fork F0, which waits for interaction Rel0. Rel0
in turn waits for P0. However, this supercycle occurs in a state where P0 is in h
and F0 is in ul. This state is not reachable from the initial state.

Page 52 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

168 P.C. Attie et al.

The existence of a supercycle is sufficient and necessary for the occurrence of
a deadlock, and so checking for supercycles gives a sound and complete check for
deadlocks. Write SC ⊆ WB(s) when SC is a subgraph of WB(s). Proposition 2
states that the existence of a supercycle implies a local deadlock: all components
in the supercycle are blocked forever.

Proposition 2. Let s be a state of B. If SC ⊆ WB(s) is a supercycle, then all
components Bi in SC cannot execute a transition in any state reachable from s,
including s itself.

Proof sketch. Every interaction a that Bi enables is not enabled by some par-
ticipant. By Defintion 4, a cannot be executed. Hence Bi cannot execute any
transition.

Proposition 3 states that the existence of a supercycle is necessary for a local
deadlock to occur: if a set of components, considered in isolation, are blocked,
then there exists a supercycle consisting of exactly those components, together
with the interactions that each component enables.

Proposition 3. Let B′ be a subcomponent of B, and let s be an arbitrary state
of B such that B′, when considered in isolation, has no enabled interaction in
state s�B′. Then, WB(s) contains a supercycle.

Proof sketch. Every atomic component Bi in B′ is individually deadlock free, by
assumption, and so there is at least one interaction ai which Bi enables. Now ai
is not enabled in B′, by the antecedent of the proposition. Hence ai has some
outgoing wait-for-edge in WB(s). The subgraph of WB(s) induced by all the Bi

and all their (locally) enabled interactions is therefore a supercycle.
We consider subcomponent B′ in isolation to avoid other phenomena that

prevent interactions from executing, e.g., conspiracies [5]. Now the converse of
Proposition 3 is that absence of supercycles in WB(s) means there is no locally
deadlocked subsystem. Taking B′ = B, this implies that B is not deadlocked,
and so there is at least one interaction of B which is enabled in state s.

Corollary 2. If, for every reachable state s of (B,Q0), WB(s) is supercycle-
free, then (B,Q0) is deadlock-free.

Proof sketch. Immediate from Proposition 3 (with B′ = B) and Definition 11.

3.3 Structural Properties of Supercycles

We present some structural properties of supercycles, which are central to our
deadlock-freedom condition.

Definition 14 (Path, path length). Let G be a directed graph and v a vertex
in G. A path π in G is a finite sequence v1, v2, . . . , vn such that (vi, vi+1) is an
edge in G for all i ∈ {1, . . . , n− 1}. Write pathG(π) iff π is a path in G. Define
first(π) = v1 and last(π) = vn. Let |π| denote the length of π, which we define
as follows:

Page 53 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework for Deadlock Prevention in BIP 169

– if π is simple, i.e., all vi, 1 ≤ i ≤ n, are distinct, then |π| = n− 1, i.e., the
number of edges in π

– if π contains a cycle, i.e., there exist vi, vj such that i �= j and vi = vj, then
|π| = ω (ω for “infinity”).

Definition 15 (In-depth, Out-depth). Let G be a directed graph and v a
vertex in G. Define the in-depth of v in G, notated as in depthG(v), as follows:

– if there exists a path π in G that contains a cycle and ends in v, i.e., |π| =
ω ∧ last(π) = v, then in depthG(v) = ω,

– otherwise, let π be a longest path ending in v. Then in depthG(v) = |π|.
Formally, in depthG(v) = (MAX π : pathG(π) ∧ last(π) = v : |π|).

Likewise define out depthG(v) = (MAX π : pathG(π) ∧ first(π) = v : |π|), the
out-depth of v in G, i.e., we consider paths starting (rather than ending) in v.

We use in depthB(v, s) for in depthWB(s)(v), and also out depthB(v, s) for
out depthWB(s)(v).

Proposition 4. A supercycle SC contains no nodes with finite out-depth.

Proof sketch. By contradiction. Let v be a node in SC with finite out-depth.
Hence all outgoing paths from v end in a sink node. By assumption, all atomic
components are individually deadlock-free, i.e., they always enable at least one
interaction. Hence these sink nodes are all interactions, and therefore they violate
clause 3 in Definition 13.

Proposition 5. Every supercycle SC contains at least one cycle.

Proof sketch. Suppose not. Then SC is an acyclic supercycle. Hence every node
in SC has finite out-depth, which contradicts Proposition 4.

Proposition 6. Let B = γ(B1, . . . , Bn) be a composite component and s a state
of B. Let SC be a supercycle in WB(s), and let SC′ be the graph obtained from
SC by removing all vertices of finite in-depth and their incident edges. Then SC′

is also a supercycle in WB(s).

Proof sketch. By Proposition 5, SC′ is nonempty. Thus SC′ satisfies clause (1) of
Definition 13. Let v be an arbitrary vertex of SC′. Hence v has infinite in-depth,
and therefore so do all of v’s sucessors in SC. Hence all of these successors are
in SC′. Hence every vertex v in SC′ has successors in SC′ that satisfy clauses
(2) and (3) of Definition 13.

4 A Global Condition for Deadlock Freedom

Consider a reachable transition s
a→ t of (B,Q0). Suppose that the execution of

this transition creates a supercycle SC, i.e., SC �⊆ WB(s) ∧ SC ⊆ WB(t). The
only components that can change state along this transition are the participants
of a, i.e., the Bi ∈ Ca, and so they are the only components that can cause a
supercycle to be created in going from s to t. There are three relevant possibilities
for each Bi ∈ Ca:

Page 54 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

170 P.C. Attie et al.

1. Bi has finite in-depth in WB(t): then, if Bi ∈ SC, it can be removed and
still leave a supercycle SC′, by Proposition 6. Hence SC′ exists in WB(s),
and so Bi is not essential to the creation of a supercycle.

2. Bi has finite out-depth in WB(t): by Proposition 4, Bi cannot be part of a
supercycle, and so SC ⊆ WB(s).

3. Bi has infinite in-depth and infinite out-depth in WB(t): in this case, Bi is
possibly an essential part of SC, i.e., SC was created in going from s to t.

We thus impose a condition which guarantees that only case 1 or case 2 occur.

Definition 16 (DFC(a)). Let s
a→ t be a reachable transition of BIP-system

(B,Q0). Then, in t, the following holds. For every component Bi of Ca: either
Bi has finite in-depth, or finite out-depth, in WB(t). Formally,

∀Bi ∈ Ca : in depthB(Bi, t) < ω ∨ out depthB(Bi, t) < ω.

To proceed, we show that wait-for-edges not involving some interaction a and
its participants Bi ∈ Ca are unaffected by the execution of a. Say that edge e in
a wait-for-graph is Bi-incident iff Bi is one of the endpoints of e.

Proposition 7 (Wait-for-edge preservation). Let s
a→ t be a transition of

composite component B = γ(B1, . . . , Bn), and let e be a wait-for edge that is not
Bi-incident, for every Bi ∈ Ca. Then e ∈ WB(s) iff e ∈ WB(t).

Proof sketch. Components not involved in the execution of a do not change state
along s

a→ t. Hence the endpoint of e that is a component has the same state in
s as in t. The proposition then follows from Definition 12.

We show, by induction on the length of finite exeuctions, that every reachable
state is supercycle-free. Assume that every initial state is supercycle-free, for the
base case. Assuming DFC(a) for all a ∈ γ provides, by the above discussion, the
induction step.

Theorem 1 (Deadlock-freedom). If (1) for all s0 ∈ Q0, WB(s0) is supercycle-
free, and (2) for all interactions a of B (i.e., a ∈ γ), DFC(a) holds,
then for every reachable state u of (B,Q0): WB(u) is supercycle-free.

Proof. We only need show the induction step: for every reachable transition s
a→

t, WB(s) is supercycle-free implies that WB(t) is supercycle-free. We establish
the contrapositive: if WB(t) contains a supercycle, then so does WB(s).

Let SC be a supercycle in WB(t), and let SC′ be SC with all nodes of finite
in-depth removed. SC′ is a supercycle in WB(t) by Proposition 6. Let e be an
arbitrary edge in SC′. Hence e ∈ WB(t). Also, both nodes of e have infinite
in-depth (by construction of SC′) and infinite out-depth (by Proposition 4) in
WB(t). Let Bi be an arbitrary component in Ca. By DFC(a), Bi has finite in-
depth or finite out-depth in WB(t): in depthB(Bi, t) < ω ∨ out depthB(Bi, t) <
ω. Hence e is not Bi-incident. So, e ∈ WB(s), by Proposition 7. Hence SC′ ⊆
WB(s), and so WB(s) contains a supercycle.

Page 55 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework for Deadlock Prevention in BIP 171

5 A Local Condition for Deadlock Freedom

Evaluating DFC(a) requires checking all reachable transitions of (B,Q0), which
is subject to state-explosion. We need a condition which implies DFC(a) and can
be checked efficiently. Observe that if in depthB(Bi, t) < ω∨out depthB(Bi, t) <
ω, then there is some finite � such that in depthB(Bi, t) = �∨out depthB(Bi, t) =
�. This can be verified in a subsystem whose size depends on �, as follows.

Definition 17 (Structure Graph GB, G
�
i , G

�
a). The structure graph GB of

composite component B = γ(B1, . . . , Bn) is a bipartite graph whose nodes are
the B1, . . . , Bn and all the a ∈ γ. There is an edge between Bi and interaction a
iff Bi participates in a, i.e., Bi ∈ Ca. Define the distance between two nodes to
be the number of edges in a shortest path between them. Let G�

i (G�
a respectively)

be the subgraph of GB that contains Bi (a respectively) and all nodes of GB that
have a distance to Bi (a respectively) less than or equal to �.

Then in depthB(Bi, t) = � ∨ out depthB(Bi, t) = � can be verified in the wait-
for-graph of G�+1

i , since we verify either that all wait-for-paths ending in Bi

have length ≤ �, or that all wait-for-paths starting in Bi have length ≤ �. These
conditions can be checked in G�+1

i , since G�+1
i contains every node in a wait-for-

path of length �+ 1 or less and which starts or ends in Bi. Since G�+1
i ⊆ G�+2

a

for Bi ∈ Ca, we use G�+2
a instead of the set of subsystems {G�+1

i : Bi ∈ Ca}.
We leave analysis of the tradeoff between using one larger system (G�+2

a) versus
several smaller ones (G�+1

i) to another paper. Define D�
a, the deadlock-checking

subsystem for interaction a and depth �, to be the subsystem of (B,Q0) based
on G�+2

a .

Definition 18 (LDFC(a, �)). Let sa
a→ ta be a reachable transition of D �

a.
Then, in ta, the following holds. For every component Bi of Ca: either Bi has
in-depth at most �, or out-depth at most �, in WD�

a
(ta). Formally,

∀Bi ∈ Ca : in depthD�
a
(Bi, ta) ≤ � ∨ out depthD�

a
(Bi, ta) ≤ �.

To infer deadlock-freedom in (B,Q0) by checking LDFC(a, �), we show that
wait-for behavior in B “projects down” to any subcomponent B′, and that wait-
for behavior in B′ “projects up” to B.

Proposition 8 (Wait-for-edge projection). Let (B′, Q′
0) be a subsystem of

(B,Q0). Let s be a state of (B,Q0), and s′ = s�B′. Let a be an interaction of
(B′, Q′

0), and Bi ∈ Ca an atomic component of B′. Then (1) a → Bi ∈ WB(s)
iff a → Bi ∈ WB′(s′), and (2) Bi → a ∈ WB(s) iff Bi → a ∈ WB′(s′).

Proof sketch. Since s′ = s�B′, all port enablement conditions of components in
B′ have the same value in s and in s′. The proposition then follows by straight-
forward application of Definition 12.

Since wait-for-edges project up and down, it follows that wait-for-paths project
up and down, provided that the subsystem contains the entire wait-for-path.

Page 56 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

172 P.C. Attie et al.

Proposition 9 (In-projection, Out-projection). Let � ≥ 0, let Bi be an
atomic component of B, and let (B′, Q′

0) be a subsystem of (B,Q0) which is
based on a superset of G�+1

i . Let s be a state of (B,Q0), and s′ = s�B′. Then (1)
in depthB(Bi, s) ≤ � iff in depthB′(Bi, s

′) ≤ �, and (2) out depthB(Bi, s) ≤ �
iff out depthB′(Bi, s

′) ≤ �.

Proof sketch. Follows from Defintion 15, Proposition 8, and the observation that
WB′(s′) contains all wait-for-paths of length ≤ � that start or end in Bi.

We now show that LDFC(a, �) implies DFC(a), which in turn implies deadlock-
freedom.

Lemma 1. Let a be an interaction of B, i.e., a ∈ γ. If LDFC(a, �) holds for
some finite � ≥ 0, then DFC(a) holds.
Proof sketch. Let s

a→ t be a reachable transition of (B,Q0) and let sa = s�D�
a,

ta = t�D�
a. Then sa

a→ ta is a reachable transition of D�
a by Corollary 1. By

LDFC(a, �), in depthD�
a
(Bi, ta) ≤ � ∨ out depthD�

a
(Bi, ta) ≤ �. Hence by Propo-

sition 9, in depthB(Bi, t) ≤ � ∨ out depthB(Bi, t) ≤ �. So in depthB(Bi, t) <
ω ∨ out depthB(Bi, t) < ω. Hence DFC(a) holds.
Theorem 2 (Deadlock-freedom). If (1) for all s0 ∈ Q0, WB(s0) is supercycle-
free, and (2) for all interactions a of B (a ∈ γ), LDFC(a, �) holds for some � ≥ 0,
then for every reachable state u of (B,Q0): WB(u) is supercycle-free.

Proof sketch. Immediate from Lemma 1 and Theorem 1.

6 Implementation and Experimentation

LDFC-BIP, (∼ 1500 LOC Java) implements our method for finite-state BIP-
systems. Pseudocode for LDFC-BIP is shown in Figure 4. checkDF(B,Q0) iterates
over each interaction a of (B,Q0), and checks (∃� ≥ 0 : LDFC(a, �)) by starting
with � = 0 and incrementing � until either LDFC(a, �) is found to hold, or D�

a

has become the entire system and LDFC(a, �) does not hold. In the latter case,
LDFC(a, �) does not hold for any finite �, and, in practice, computation would
halt before D�

a had become the entire system, due to exhaustion of resources.
locLDFC(a, �) checks LDFC(a, �) by examining every reachable transition that

executes a, and checking that the final state satisfies Definition 18.
The running time of our implementation is O(Σa∈γ |D�a

a |), where �a is the
smallest value of � for which LDFC(a, �) holds, and where |D�a

a | denotes the size
of the transition system of D�a

a .

6.1 Experiment: Dining Philosophers

We consider n philosophers in a cycle, based on the components of Figure 1.
Figure 5(a) provides experimental results. The x axis gives the number n of
philosophers (and also the number of forks), and the y axis gives the verification
time (in milliseconds). We verified that LDFC(a, �) holds for � = 1 and all inter-
actions a. Hence dining philosophers is deadlock-free. We increase n and plot the

Page 57 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework for Deadlock Prevention in BIP 173

checkDF(B,Q0), where B � γ(B1, . . . , Bn)
1. forall interactions a ∈ γ
2. //check (∃� ≥ 0 : LDFC(a, �))
3. �← 0; //start with � = 0
4. while (true)
5. if (locLDFC(a, �) = true) break endif ; //success, so go on to next a
6. if (D�

a = γ(B1, . . . , Bn)) return(false) endif ;
7. �← �+ 1 //increment � until success or intractable or failure
8. endwhile
9. endfor;
10. return(true) //return true if check succeeds for all a ∈ γ

locLDFC(a, �)

1. forall reachable transitions sa
a→ ta of D�

a

2. if (¬(∀Bi ∈ Ca : in depthD�
a
(Bi, ta) = � ∨ out depthD�

a
(Bi, ta) = �))

3. return(false) //check Definition 18
4. endfor;
5. return(true) //return true if check succeeds for all transitions

Fig. 4. Pseudocode for the implementation of our method

verification time for both LDFC-BIP and D-Finder 2 [8]. D-Finder 2 implements
a compositional and incremental method for the verification of BIP-systems. D-
Finder (the precursor of D-Finder 2) has been compared favorably with NuSmv
and SPIN, outperforming both NuSmv and SPIN on dining philosophers, and
outperforming NuSmv on the gas station example [7], treated next. Our results
show that LDFC-BIP has a linear increase of computation time with the system
size (n), and so outperforms D-Finder 2.

6.2 Experiment: Gas Station

A gas station [13] consists of an operator, a set of pumps, and a set of customers.
Before using a pump, a customer has to prepay. Then the customer uses the
pump, collects his change and starts a new transaction. Before being used by a
customer, a pump has to be activated by the operator. When a pump is shut
off, it can be re-activated for the next operation.

We verified LDFC(a, �) for � = 2 and all interactions a. Hence gas station is
deadlock-free. Figures 5(b), 5(c), and 5(d) present the verification times using
LDFC-BIP and D-Finder 2. We consider a system with 3 pumps and variable
number of customers. In these figures, the x axis gives the number n of cus-
tomers, and the y axis gives the verification time (in seconds). D-Finder 2 suf-
fers state-explosion at n = 1800, because we consider only three pumps, and so
the incremental method used by D-Finder 2 deteriorates. LDFC-BIP outperforms
D-Finder 2 as the number of customers increases.

Page 58 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

174 P.C. Attie et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Number of Philosophers

LDFC
DFinder

(a) Dining philosophers benchmark.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(b) Gas station benchmark 1.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(c) Gas station benchmark 2.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(d) Gas station benchmark 3.

Fig. 5. Benchmarks generated by our experiments

7 Discussion, Related Work, and Further Work

Related Work. The notions of wait-for-graph and supercycle [3, 4] were initially
defined for a shared memory program P = P1 ‖· · ·‖PK in pairwise normal form:
a binary symmettric relation I specifies the directly interacting pairs (“neigh-
bors”) {Pi, Pj}. If Pi has neighbors Pj and Pk, then the code in Pi that interacts
with Pj is expressed separately from the code in Pi that interacts with Pk. These
synchronization codes are executed synchronously and atomically, so the grain
of atomicity is proportional to the degree of I. Attie and Chockler [3] give two
polynomial time methods for deadlock freedom. The first checks subsystems con-
sisting of three processes. The second computes the wait-for-graphs of all pair
subsystems Pi ‖Pj , and takes their union, for all pairs and all reachable states
of each pair. The first method considers only wait-for-paths of length ≤ 2. The
second method is prone to false negatives, because wait-for edges generated by
different states are all merged together, which can result in spurious supercycles.

Page 59 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework for Deadlock Prevention in BIP 175

Gössler and Sifakis [12] use a BIP-like formalism, Interaction Models. They
present a criterion for global deadlock freedom, based on an and-or graph with
components and constraints as the two sets of nodes. A constraint gives the con-
dition under which a component is blocked. Edges are labeled with conjuncts of
the constraints. Deadlock freedom is checked by traversing every cycle, taking
the conjunction of all the conditions labeling its edges, and verifying that this
conjunction is always false, i.e., verifying the absence of cyclical blocking. No
complexity bounds are given. Martens and Majster-Cederbaum [14] present a
polynomial time checkable deadlock freedom condition based on structural re-
strictions: “the communication structure between the components is given by a
tree.” This restriction allows them to analyze only pair systems. Brookes and
Roscoe [11] provide criteria for deadlock freedom of CSP programs based on
structural and behavioral restrictions combined with analysis of pair systems.
No implementation, or complexity bounds, are given. Aldini and Bernardo [1]
use a formalism based on process algebra. They check deadlock by analysing
cycles in the connections between software components, and claim scalability,
but no complexity bounds are given.

We compared our implementation LDFC-BIP to D-Finder 2 [8]. D-Finder 2
computes a finite-state abstraction for each component, which it uses to com-
pute a global invariant I. It then checks if I implies deadlock freedom. Unlike
LDFC-BIP, D-Finder 2 handles infinite state systems. However, LDFC-BIP had
superior running time for dining philosophers and gas station (both finite-state).

All the above methods verify global (and not local) deadlock-freedom. Our
method verifies both. Also, our approach makes no structural restriction at all
on the system being checked for deadlock.

Discussion. Our approach has the following advantages:

Local and Global Deadlock. Our method shows that no subset of processes
can be deadlocked, i.e., absence of both local and global deadlock.

Check Works for Realistic Formalism. By applying the approach to BIP,
we provide an efficient deadlock-freedom check within a formalism from
which efficient distributed implementations can be generated [9].

Locality. If a component Bi is modified, or is added to an existing system, then
LDFC(a, �) only has to be re-checked for Bi and components within distance
� of Bi. A condition whose evaluation considers the entire system at once,
e.g., [1, 8, 12] would have to be re-checked for the entire system.

Easily Parallelizable. Since the checking of each subsystem D�
a is independent

of the others, the checks can be carried out in parallel. Hence our method can
be easily parallelized and distributed, for speedup, if needed. Alternatively,
performing the checks sequentially minimizes the amount of memory needed.

Framework Aspect. Supercycles and in/out-depth provide a framework for
deadlock-freedom. Conditions more general and/or discriminating than the
one presented here should be devisable in this framework. This is a topic for
future work.

Page 60 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

176 P.C. Attie et al.

Further Work. Our implementation uses explicit state enumeration. Using BDD’s
may improve the running time when LDFC(a, �) holds only for large �. An en-
abled port p enables all interactions containing p. Deadlock-freedom conditions
based on ports could exploit this interdepence among interaction enablement.
Our implementation should produce counterexamples when a system fails to sat-
isfy LDFC(a, �). Design rules for ensuring LDFC(a, �) will help users to produce
deadlock-free systems, and also to interpret counterexamples. A fault may create
a deadlock, i.e., a supercycle, by creating wait-for-edges that would not normally
arise. Tolerating a fault that creates up to f such spurious wait-for-edges requires
that there do not arise during normal (fault-free) operation subgraphs of WB(s)
that can be made into a supercycle by adding f edges. We will investigate criteria
for preventing formation of such subgraphs. Methods for evaluating LDFC(a, �)
on infinite state systems will be devised, e.g.,, by extracting proof obligations
and verifying using SMT solvers. We will extend our method to Dynamic BIP,
[10], where participants can add and remove interactions at run time.

References

1. Aldini, A., Bernardo, M.: A General Approach to Deadlock Freedom Verification
for Software Architectures. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 658–677. Springer, Heidelberg (2003)

2. Attie, P.C.: Synthesis of large concurrent programs via pairwise composition. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 130–145.
Springer, Heidelberg (1999)

3. Attie, P.C., Chockler, H.: Efficiently verifiable conditions for deadlock-freedom of
large concurrent programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385,
pp. 465–481. Springer, Heidelberg (2005)

4. Attie, P.C., Allen Emerson, E.: Synthesis of Concurrent Systems with Many Similar
Processes. TOPLAS 20(1), 51–115 (1998)

5. Attie, P.C., Francez, N., Grumberg, O.: Fairness and Hyperfairness in Multiparty
Interactions. Distributed Computing 6, 245–254 (1993)

6. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: SEFM, pp. 3–12 (September 2006)

7. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: Compositional verification for
component-based systems and application. IET Software 4(3), 181–193 (2010)

8. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
D-finder 2: Towards efficient correctness of incremental design. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
453–458. Springer, Heidelberg (2011)

9. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From High-
level Component-based Models to Distributed Implementations. In: EMSOFT,
pp. 209–218 (2010)

10. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling Dynamic Architectures Using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

Page 61 of 62 Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer R
eview

An Abstract Framework for Deadlock Prevention in BIP 177

11. Brookes, S.D., Roscoe, A.W.: Deadlock analysis in networks of communicating
processes. Distributed Computing 4, 209–230 (1991)

12. Göler, G., Sifakis, J.: Component-based construction of deadlock-free systems.

In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914,
pp. 420–433. Springer, Heidelberg (2003)

13. Heimbold, D., Luckham, D.: Debugging Ada tasking programs. IEEE Soft-
ware 2(2), 47–57 (1985)

14. Martens, M., Majster-Cederbaum, M.: Deadlock-freedom in component systems
with architectural constraints. FMSD 41, 129–177 (2012)

15. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

Page 62 of 62Transactions on Software Engineering and Methodology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

