
Does Principal Component Analysis Improve Cluster-Based Analysis?

Joan Farjo, Rawad Abou Assi, Wes Masri, and Fadi Zaraket
Department of Electrical and Computer Engineering

American University of Beirut
Beirut, Lebanon

{jmf09, ria21, wm13, fz11}@aub.edu.lb

Abstract- Researchers in the dynamic program analysis field
have extensively used cluster analysis to address various
problems. Typically, the clustering techniques are applied onto
execution profiles having high dimensionality (i.e., involving a
large number of profiling elements), sometimes in the order of
thousands or even hundreds of thousands. Our concern is that
the high number of profiling elements might diminish the
effectiveness of the clustering process, which led us to explore
the use of dimensionality reduction techniques as a
preprocessing step to clustering.
Specifically, in this work, we used PCA (Principal Component
Analysis) as a dimensionality reduction technique and
investigated its impact on two cluster-based analysis
techniques, one aiming at identifying coincidentally correct
tests, and the other at test suite minimization. In other words,
we tried to assess whether PCA improves cluster-based
analysis. Our experimental results showed that the impact was
positive on the first technique, but inconclusive on the second,
which calls for further investigation in the future.

Keywords- PCA (Principal Component Analysis), cluster
analysis, dimensionality reduction, test suite minimization,
coincidental correctness.

I. INTRODUCTION

Cluster analysis has been used in several areas of
dynamic software analysis, such as test suite minimization,
fault localization [8] [10], and application-based intrusion
detection [18]. The clustering techniques are applied onto
execution profiles comprising profiling elements that varied
in terms of complexity, e.g., statements, edges, def-uses,
information flow pairs [17], slice pairs [11] [19], and
paths [21]. Also, typically these execution profiles exhibit
high dimensionality, i.e., include thousands or even hundreds
of thousands of profiling elements. Our concern is that the
high number of profiling elements might diminish the
effectiveness of the clustering process, which led us to
explore the use of dimensionality reduction techniques as a
preprocessing step to clustering.

The goal of this work is to investigate the impact of
dimensionality reduction on cluster-based dynamic program
analyses, and specifically, the impact of PCA (Principal
Component Analysis) [23] on two cluster-based analysis
techniques, one aiming at identifying coincidentally correct
tests, and the other at test suite minimization. In other words,
we tried to answer the following question: “Does Principal
Component Analysis Improve Cluster-Based Analysis?”.

We first describe PCA and the basis behind it (Section
II). Then we describe our two experimental studies (Section

III and IV). Finally, Section V presents our conclusions and
future work.

II. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is an unsupervised
and linear technique that reduces the dimensionality of a data
set (possibly involving correlated variables) to a new set
involving uncorrelated variables. The generated uncorrelated
variables are called principal components (PCs). The
obtained set has the PCs ordered by the fraction of the total
information/variation each retains. That is, the first PC
captures as much of the variability present in the data set as
possible, the second PC also captures as much of the
variability but under the constraint of being uncorrelated
with the previous (first) PC, and similarly for the subsequent
PCs. PCA is typically used in situations where high
dimensionality data needs to be reduced, therefore, after
applying it, only specific PCs are considered and the
remaining ones ignored according to the criteria adopted for
choosing the eigenvectors as will be explained in the
following section. Also, PCA can be viewed as a technique
for removing redundant information from a data set [22] [6].
This redundancy is likely due to the fact that some variables
measure the same or related constructs. In the context of
software analysis, this type of redundancy is prevalent
mostly due to the transitivity relationships induced by control
and data dependences.

A. Details
PCA transforms the original data of dimension n to a new

coordinate system such that the greatest variance by any
projection of the data lies on the first coordinate or PC1, the
second greatest variance on the second coordinate or PC2,
and so on [6]. The number of PCs (or eigenvectors) extracted
in a PCA is equal to the number of observed variables being
analyzed, i.e., the new coordinate system is also of
dimension n [6][23]. And only the first few components
account for significant amounts of variance.

PC1 accounts for a maximal amount of total variance,
which means that it will be correlated with at least some (or
many) of the observed variables. PC2 will account for a
maximal amount of variance in the data set that was not
accounted for by PC1, meaning that PC2 will be correlated
with some of the observed variables that did not display
strong correlations with PC1. In addition, PC2 will be
uncorrelated with PC1 [6] [5]. Each remaining PC accounts
for a maximal amount of variance in the observed variables
that was not accounted for by the preceding components, and
is uncorrelated with all of the preceding components, having

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops

978-0-7695-4993-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ICSTW.2013.52

400

in mind that now each lower component accounts for smaller
variance.

There are several criteria for choosing the number of
eigenvectors (PCs) to retain, including, the eigenvalue-one
criterion [9], the scree test [3], the J-measure, the SEPCOR-
algorithm, the proportion of variance accounted for
criterion [6], and the cumulative percent of variance
accounted for criterion [6] [5] known also as the m-method,
which we use in this work. The m-method retains enough
components so that the cumulative percent of variance
accounted for is equal to some minimal value. For example,
if PC1, PC2, PC3, PC4, accounted for 45%, 38%, 10%, and
5% of the total variance, respectively. It suffices to only
retain PC1, PC2, and PC3 if the minimal value sought was
90%.

B. PCA Steps
Below are the main steps for conducting PCA [23]:

a. Compute the mean for each dimension and subtract
it from the data of that dimension in order to obtain
the MeanAdjustedData with a mean of 0

b. Build the covariance matrix
c. Extract the eigenvectors (PCs) and eigenvalues of

the covariance matrix. An eigenvalue represents the
amount of variance that is accounted for by a given
eigenvector

d. Order the eigenvectors in decreasing order of their
eigenvalues

e. Choose the eigenvectors of interest according to the
cumulative percent of variance accounted for
criterion, to form the FeatureVector (a matrix with
the chosen eigenvectors in the columns)

f. Compute the transpose of the FeatureVector an
mul ip y it with the transposed MeanAdjustedData

��������� 	 �
����

������ � ��
��������
������

d
t l

g. FinalData represents the original data in terms of
the eigenvectors we chose

III. EXPERIMENTAL STUDY-I

A. Identifying Coincidentally Correct Tests
The recognized conditions for failure to be observed

are [24] [2]: 1) the defect got executed, 2) the program has
transitioned into an infectious state, and 3) the infection has
propagated to the output. Coincidental correctness
(CC) [13] [14] [7] [25] [15] arises when the program produces
the correct output while condition (1) is met but neither (2)
nor (3) occurred. Identifying CC tests in order to cleanse test
suites from coincidental correctness was shown to enhance
coverage-based fault localization (CBFL) [1] [12] [8] [10].

To help describe our experiment, we first define few
terms. A test suite T comprises a set of passing tests TP and a
set of failing tests TF, where TP might be composed of a
subset of coincidentally correct tests TCC and another subset
of true passing tests TtrueP, i.e., passing tests that did not
execute the fault. The aim is to identify TCC given TF and TP

so that the tests in TCC would be moved from TP to TF or
discarded in order to enhance the effectiveness of CBFL.

A simple technique for identifying TCC conjectures that
coincidentally correct tests are similar to the failing tests, and
thus should cluster together. Therefore, given a single fault
program and an associated test suite in which tests are
categorized as passing and failing. Creating two clusters out
of the test suite should ideally lead to one cluster comprising
TtrueP and another comprising TF and TCC.

B. Experimental Setup and Results
In this experiment we contrast the performance of the

above cluster-based technique from when it is applied to the
original data set to when PCA is first used to reduce the
dimensionality of the data set. Note that K-means clustering
is used in this experiment where k is set to 2. Table 1 shows
information about the used programs and the composition of
their test suites. This study was conducted using 10 seeded
versions from the Siemens benchmark. Since our available
profiling tools only supported Java programs, the programs
were converted to Java as part of previous work [14]. Note
that the execution profiles in this study included all of the
following three profiling types: basic blocks, branches, and
def-use pairs.

Table 1 also summarizes our results for when PCA was
used and when it was not used. For each subject it shows: 1)
the average % of false positives (FP), 2) the average % of
false negatives (FN), and 3) the average % of false alarms
(FA=FN+FP). Note that FN assesses whether or not we are
successfully identifying all of the CC tests, and FP assesses
whether we are erroneously categorizing tests as CC. It’s
worth mentioning that the K-means algorithm we used is
deterministic since the two selected initial means correspond
to the passing and failing test cases that are separated by the
largest measured distance.

Table 1. Subject Programs and Results
Program |T| |TF| |TP| |TCC| Without PCA With PCA

FN FP FA FN FP FA
print_tokens_v7 4070 28 4042 357 0% 87% 87% 22% 8% 30%

print_tokens2_v4 4055 332 3723 1099 0% 95% 95% 11% 40% 51%

tot_info_v22 1052 23 1029 843 0% 49% 49% 0% 10% 10%

replace_v28 2843 18 2825 801 55% 47% 102% 56% 46% 102%

schedule_v2 2650 210 2440 1382 0% 50% 50% 8% 25% 33%

schedule_v3 2650 159 2491 1199 0% 62% 62% 7% 38% 45%

schedule_v4 2650 294 2356 1481 0% 43% 43% 8% 14% 22%

schedule_v8 2650 31 2619 1311 0% 58% 58% 7% 39% 46%

tcas_v16 1597 70 1527 1497 46% 0% 46% 46% 0% 46%

tcas_v25 1597 3 1594 396 0% 40% 40% 0% 40% 40%

It could be observed from the results in Table 1 (the FA
columns in particular) that for 7 out of the 10 subject
programs PCA considerably improved the CC identification
process, and for the remaining 3 subject programs it had no
positive or negative impact. It is also worth noting that in 2
out of the 3 latter cases (i.e., for tcas_v16 and tcas_v25), the
programs are relatively small and exhibit simple structure.

401

IV. EXPERIMENTAL STUDY-II

A. Cluster-based Test Suite Minimization
Test suite minimization involves selecting a subset of

tests T’ from an existing test suite T in order to reduce the
cost of the testing process. An effective minimization
technique would yield a T’ that is manageable in size and
that reveals all (or most of) the defects revealed by T.

Coverage based test suite minimization techniques
analyze the execution profiles of a program in order to
construct a T’ such that all the profiling elements covered by
T are also covered by T’ [20][16]. Distribution-based test
suite minimization [20] techniques select test cases based on
how their execution profiles are distributed in the
multidimensional profile space. In this experiment, we use a
distribution-based technique comprising the following steps:

a) For each pair of tests (execution profiles), a metric
that represents their degree of dissimilarity is computed. We
used the follo (b ri [4]:wing dissimilarity inary) met c

�������� ! 	 "# $�% &� ' �%!&�$(&)*
where i and j are test cases, r is a profiling element, and k

is the total number of distinct profiling elements induced by
the test suite. Using this dissimilarity metric, the smaller the
number of common elements executed by i and j, the larger
the value of the metric.

b) Based on the computed metrics, K-means clustering
is applied to partition the population into k clusters.

c) One test is randomly selected from each cluster
similar to what is done in [4]. This one-per-cluster sampling
technique economically exercises each program behavior
represented by a cluster, and it also favors the selection of
unusual executions, which tend to be placed in isolated
clusters.

d) The k selected tests represent the tests in T’.

B. Experimental Setup and Results
This experiment compares the performance of two

variants of the above cluster-based test suite minimization
technique. In the first, the original execution profiles are
used, whereas in the second PCA is first applied.

Table 2 describes the subject programs, original test
suites, and minimized test suites using PCA and without
using it. In order to account for the variability of the samples,
the algorithm’s steps were applied 1000 times and the results
were averaged. Therefore, the reported |T’| correspond to
when T’ reveals 100%, on average, of the defects revealed in
T. Note that each test suite contained no more that 5%
failures.

Two points are worth pointing out in regard to our use of
PCA. First, enough components (eigenvectors) are retained
so that the cumulative percent of variance accounted for is
equal to 90% (see Section II.A). Second, Table 2 reports two
values for |T’|: a) the smallest/earliest |T’| that revealed 100%
of the defects on average, denoted by “Smallest”; b) the
smallest |T’| that revealed 100% of the defects on average
with the additional constraint that it was not followed by a
larger |T’| that revealed less than 100%, denoted by “Stable”.

Also, for the PCA based technique, the total initial number of
eigenvectors and the number of eigenvectors (PCs) retained
to attain 90% variability, are reported.

Note that the Space program, which is written in C, was
profiled using GCov as opposed to our own profiling tools
which only support Java programs.

Table 2. Subject Programs and Results

Program #
Faults |T|

|T’|: NonPCA |T’|: PCA

Smallest Stable tot.
#Eig #Eig Smallest Stable

Space 5 2000 300 400 3164 25 300 300

JTidy 4 2000 200 200 5110 20 250 250

print_tokens2 7 3691 550 2550 278 8 500 3300

tot_info 6 952 150 900 271 8 850 950

schedule 3 1406 750 750 238 14 450 550

Based on Table 2 we make the following observations:
1) For JTidy and print_tokens2, PCA had a clear

negative impact
2) For tot_info, PCA had a minor negative impact
3) And for Schedule and Space, it had a clear positive

impact
That is, the impact of PCA on cluster-based test suite
minimization was inconclusive.

V. CONCLUSIONS AND FUTURE WORK

The aim of this work was to use PCA (Principal
Component Analysis) as a dimensionality reduction
technique and investigate its impact on two cluster-based
analysis techniques, one aiming at identifying coincidentally
correct tests, and the other at test suite minimization. Our
experimental results showed that the impact was positive on
the first technique, but inconclusive on the second.

In the future, we will experiment with different criteria to
choose our eigenvectors, and we will investigate variations
of PCA (e.g., Kernel PCA and Probabilistic PCA) and other
dimensionality reduction techniques.

ACKNOWLEDGMENT

This research was supported in part by NSF grant no.
0819987.

REFERENCES

[1] Abou-Assi R. and Masri W. Identifying Failure-Correlated
Dependence Chains. First International Workshop on Testing
and Debugging, TeBug/ICST 2011, Berlin, March 2011.

[2] Ammann P. and Offutt J. Introduction to Software Testing.
Cambridge University Press, 2008.

[3] Cattell, R. B. (1966). The scree test for the number of factors.
Multivariate Behavioral Research, 1, 245-276.

[4] Dickinson W., Leon D., and Podgurski A. Finding Failures by
Cluster Analysis of Execution Profiles. ICSE 2001: 339-348.

[5] Fodor I. K. A survey of dimension reduction techniques.
Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory. June 2002.

402

[6] Hatcher, Larry. 1994. A Step-by-Step Approach to Using SAS
for Factor Analysis and Structural Equation Modeling. Cary,
NC: SAS Institute Inc.

[7] Hierons R. M. Avoiding coincidental correctness in boundary
value analysis. ACM TOSEM. Volume 15, Issue 3 (July
2006). Pages: 227 - 241.

[8] Jones J., Harrold M. J., and Stasko J. Visualization of Test
Information to Assist Fault Localization. ICSE 2001,467-477.

[9] Kaiser, H. F. (1960). The application of electronic computers
to factor analysis. Educational and Psychological
Measurement, 20, 141-151.

[10] Liblit B., Aiken A., Zheng A., and Jordan M. 2003. Bug
Isolation via Remote Program Sampling. Proc. ACM
SIGPLAN, PLDI 2003, pp. 141-154, 2003.

[11] Masri, W. Exploiting the Empirical Characteristics of
Program Dependences for Improved Forward Computation of
Dynamic Slice. Empirical Software Engineering (ESE)
(Springer), 2008 13:369-399.

[12] Masri W. Fault localization based on information flow
coverage. Softw. Test., Verif. Reliab. 20(2): 121-147 (2010).

[13] Masri W., Abou-Assi R. Cleansing Test Suites from
Coincidental Correctness to Enhance Fault-Localization.
Third International Conference on Software Testing,
Verification and Validation, ICST 2010, Paris, April, 2010.

[14] Masri W., Abou-Assi R., El-Ghali M., and Fatairi N. An
Empirical Study of the Factors that Reduce the Effectiveness
of Coverage-based Fault Localization. International
Workshop on Defects in Large Software Systems, DEFECTS,
Chicago, IL, 2009.

[15] W. Masri, R. Abou Assi, F. Zaraket, and N. Fatairi.
Enhancing Fault Localization via Multivariate Visualization,
Regression/ICST 2012, Montreal, Canada, April 2012.

[16] Masri W. and El-Ghali M. Test Case Filtering and
Prioritization Based on Coverage of Combinations of
Program Elements. Seventh International Workshop on
Dynamic Analysis, WODA, Chicago, IL, 2009.

[17] Masri W., Halabi H. An algorithm for capturing variables
dependences in test suites. Journal of Systems and Software
(JSS) 84(7): 1171-1190 (2011).

[18] Masri, W. and Podgurski, A. Application-Based Anomaly
Intrusion Detection with Dynamic Information Flow
Analysis. Computers & Security (Elsevier). Vol. 27 (2008),
pages 176-187.

[19] Masri, W. and Podgurski, A. Algorithms and Tool Support for
Dynamic Information Flow Analysis. Information and
Software Technology (IST) (Elsevier). Vol. 51 (Feb. 2009),
pages 385-404.

[20] Masri W., Podgurski A. and Leon D. An Empirical Study of
Test Case Filtering Techniques Based On Exercising
Information Flows. IEEE Transactions on Software
Engineering, July, 2007, vol. 33, number 7, page 454

[21] Reps, T., Ball, T., Das, M., and Larus, J., The use of program
profiling for software maintenance with applications to the
Year 2000 Problem. Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Zurich, 1997

[22] Shlens J. A Tutorial on Principal Component Analysis. Center
for Neural Science, New York University. April 22, 2009.

[23] Smith L. I. A tutorial on Principal Components Analysis,
February 26, 2002.

[24] Voas J. 1992. PIE: A Dynamic Failure-Based Technique.
IEEE Trans. Software Eng. 18(8): 717-727 (1992).

[25] Wang X., Cheung S.C., Chan W.K., Zhang Z. 2009. Taming
coincidental correctness: Coverage refinement with context
patterns to improve fault localization. ICSE 2009, pp. 45-55

403

