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Abstract- Researchers in the dynamic program analysis field 
have extensively used cluster analysis to address various 
problems. Typically, the clustering techniques are applied onto 
execution profiles having high dimensionality (i.e., involving a 
large number of profiling elements), sometimes in the order of 
thousands or even hundreds of thousands. Our concern is that 
the high number of profiling elements might diminish the 
effectiveness of the clustering process, which led us to explore 
the use of dimensionality reduction techniques as a 
preprocessing step to clustering.  
Specifically, in this work, we used PCA (Principal Component 
Analysis) as a dimensionality reduction technique and 
investigated its impact on two cluster-based analysis 
techniques, one aiming at identifying coincidentally correct 
tests, and the other at test suite minimization. In other words, 
we tried to assess whether PCA improves cluster-based 
analysis. Our experimental results showed that the impact was 
positive on the first technique, but inconclusive on the second, 
which calls for further investigation in the future. 

Keywords- PCA (Principal Component Analysis), cluster 
analysis, dimensionality reduction, test suite minimization, 
coincidental correctness.

I. INTRODUCTION

Cluster analysis has been used in several areas of 
dynamic software analysis, such as test suite minimization, 
fault localization  [8] [10], and application-based intrusion 
detection  [18]. The clustering techniques are applied onto 
execution profiles comprising profiling elements that varied 
in terms of complexity, e.g., statements, edges, def-uses, 
information flow pairs  [17], slice pairs  [11] [19], and 
paths  [21]. Also, typically these execution profiles exhibit 
high dimensionality, i.e., include thousands or even hundreds 
of thousands of profiling elements. Our concern is that the 
high number of profiling elements might diminish the 
effectiveness of the clustering process, which led us to 
explore the use of dimensionality reduction techniques as a 
preprocessing step to clustering.  

The goal of this work is to investigate the impact of 
dimensionality reduction on cluster-based dynamic program 
analyses, and specifically, the impact of PCA (Principal 
Component Analysis)  [23] on two cluster-based analysis 
techniques, one aiming at identifying coincidentally correct 
tests, and the other at test suite minimization. In other words, 
we tried to answer the following question: “Does Principal 
Component Analysis Improve Cluster-Based Analysis?”.

We first describe PCA and the basis behind it (Section 
II). Then we describe our two experimental studies (Section 

III and IV). Finally, Section V presents our conclusions and 
future work. 

II. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is an unsupervised 
and linear technique that reduces the dimensionality of a data 
set (possibly involving correlated variables) to a new set 
involving uncorrelated variables. The generated uncorrelated 
variables are called principal components (PCs). The 
obtained set has the PCs ordered by the fraction of the total 
information/variation each retains. That is, the first PC 
captures as much of the variability present in the data set as 
possible, the second PC also captures as much of the 
variability but under the constraint of being uncorrelated 
with the previous (first) PC, and similarly for the subsequent 
PCs. PCA is typically used in situations where high 
dimensionality data needs to be reduced, therefore, after 
applying it, only specific PCs are considered and the 
remaining ones ignored according to the criteria adopted for 
choosing the eigenvectors as will be explained in the 
following section. Also, PCA can be viewed as a technique 
for removing redundant information from a data set  [22] [6].
This redundancy is likely due to the fact that some variables 
measure the same or related constructs. In the context of 
software analysis, this type of redundancy is prevalent 
mostly due to the transitivity relationships induced by control 
and data dependences. 

A. Details 
PCA transforms the original data of dimension n to a new 

coordinate system such that the greatest variance by any 
projection of the data lies on the first coordinate or PC1, the 
second greatest variance on the second coordinate or PC2,
and so on  [6]. The number of PCs (or eigenvectors) extracted 
in a PCA is equal to the number of observed variables being 
analyzed, i.e., the new coordinate system is also of 
dimension n [6][23]. And only the first few components 
account for significant amounts of variance. 

PC1 accounts for a maximal amount of total variance, 
which means that it will be correlated with at least some (or 
many) of the observed variables. PC2 will account for a 
maximal amount of variance in the data set that was not 
accounted for by PC1, meaning that PC2 will be correlated 
with some of the observed variables that did not display 
strong correlations with PC1. In addition, PC2 will be 
uncorrelated with PC1 [6] [5]. Each remaining PC accounts 
for a maximal amount of variance in the observed variables 
that was not accounted for by the preceding components, and 
is uncorrelated with all of the preceding components, having 
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in mind that now each lower component accounts for smaller 
variance.

There are several criteria for choosing the number of 
eigenvectors (PCs) to retain, including, the eigenvalue-one 
criterion  [9], the scree test [3], the J-measure, the SEPCOR-
algorithm, the proportion of variance accounted for 
criterion  [6], and the cumulative percent of variance 
accounted for criterion  [6] [5] known also as the m-method,
which we use in this work. The m-method retains enough 
components so that the cumulative percent of variance 
accounted for is equal to some minimal value. For example, 
if PC1, PC2, PC3, PC4, accounted for 45%, 38%, 10%, and 
5% of the total variance, respectively. It suffices to only 
retain PC1, PC2, and PC3 if the minimal value sought was 
90%. 

B. PCA Steps 
Below are the main steps for conducting PCA  [23]:

a. Compute the mean for each dimension and subtract 
it from the data of that dimension in order to obtain 
the MeanAdjustedData with a mean of  0 

b. Build the covariance matrix 
c. Extract the eigenvectors (PCs) and eigenvalues of 

the covariance matrix. An eigenvalue represents the 
amount of variance that is accounted for by a given 
eigenvector

d. Order the eigenvectors in decreasing order of their 
eigenvalues 

e. Choose the eigenvectors of interest according to the 
cumulative percent of variance accounted for
criterion, to form the FeatureVector (a matrix with  
the chosen eigenvectors  in the columns) 

f. Compute the transpose of the FeatureVector an
mul ip y it with the transposed MeanAdjustedData
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g. FinalData represents the original data in terms of 
the eigenvectors we chose 

III. EXPERIMENTAL STUDY-I

A. Identifying Coincidentally Correct Tests 
The recognized conditions for failure to be observed 

are  [24] [2]: 1) the defect got executed, 2) the program has 
transitioned into an infectious state, and 3) the infection has 
propagated to the output. Coincidental correctness 
(CC)  [13] [14] [7] [25] [15] arises when the program produces 
the correct output while condition (1) is met but neither (2) 
nor (3) occurred. Identifying CC tests in order to cleanse test 
suites from coincidental correctness was shown to enhance 
coverage-based fault localization (CBFL)  [1] [12] [8] [10].

To help describe our experiment, we first define few 
terms. A test suite T comprises a set of passing tests TP and a 
set of failing tests TF, where TP might be composed of a 
subset of coincidentally correct tests TCC and another subset 
of true passing tests TtrueP, i.e., passing tests that did not 
execute the fault. The aim is to identify TCC given TF and TP

so that the tests in TCC would be moved from TP to TF or 
discarded in order to enhance the effectiveness of CBFL.  

A simple technique for identifying TCC conjectures that 
coincidentally correct tests are similar to the failing tests, and 
thus should cluster together. Therefore, given a single fault 
program and an associated test suite in which tests are 
categorized as passing and failing. Creating two clusters out 
of the test suite should ideally lead to one cluster comprising 
TtrueP and another comprising TF and TCC.

B. Experimental Setup and Results 
In this experiment we contrast the performance of the 

above cluster-based technique from when it is applied to the 
original data set to when PCA is first used to reduce the 
dimensionality of the data set. Note that K-means clustering 
is used in this experiment where k is set to 2. Table 1 shows 
information about the used programs and the composition of 
their test suites. This study was conducted using 10 seeded 
versions from the Siemens benchmark. Since our available 
profiling tools only supported Java programs, the programs 
were converted to Java as part of previous work  [14]. Note 
that the execution profiles in this study included all of the 
following three profiling types: basic blocks, branches, and 
def-use pairs. 

Table 1 also summarizes our results for when PCA was 
used and when it was not used. For each subject it shows: 1) 
the average % of false positives (FP), 2) the average % of 
false negatives (FN), and 3) the average % of false alarms 
(FA=FN+FP). Note that FN assesses whether or not we are 
successfully identifying all of the CC tests, and FP assesses 
whether we are erroneously categorizing tests as CC. It’s 
worth mentioning that the K-means algorithm we used is 
deterministic since the two selected initial means correspond 
to the passing and failing test cases that are separated by the 
largest measured distance. 

Table 1. Subject Programs and Results 
Program |T| |TF| |TP| |TCC| Without PCA With PCA 

FN FP FA FN FP FA 
print_tokens_v7 4070 28 4042 357 0% 87% 87% 22% 8% 30%

print_tokens2_v4 4055 332 3723 1099 0% 95% 95% 11% 40% 51%

tot_info_v22 1052 23 1029 843 0% 49% 49% 0% 10% 10%

replace_v28 2843 18 2825 801 55% 47% 102% 56% 46% 102%

schedule_v2 2650 210 2440 1382 0% 50% 50% 8% 25% 33%

schedule_v3 2650 159 2491 1199 0% 62% 62% 7% 38% 45%

schedule_v4 2650 294 2356 1481 0% 43% 43% 8% 14% 22%

schedule_v8 2650 31 2619 1311 0% 58% 58% 7% 39% 46%

tcas_v16 1597 70 1527 1497 46% 0% 46% 46% 0% 46%

tcas_v25 1597 3 1594 396 0% 40% 40% 0% 40% 40%

It could be observed from the results in Table 1 (the FA 
columns in particular) that for 7 out of the 10 subject 
programs PCA considerably improved the CC identification 
process, and for the remaining 3 subject programs it had no 
positive or negative impact. It is also worth noting that in 2 
out of the 3 latter cases (i.e., for tcas_v16 and tcas_v25), the 
programs are relatively small and exhibit simple structure. 
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IV. EXPERIMENTAL STUDY-II 

A. Cluster-based Test Suite Minimization 
Test suite minimization involves selecting a subset of 

tests T’ from an existing test suite T in order to reduce the 
cost of the testing process. An effective minimization 
technique would yield a T’ that is manageable in size and 
that reveals all (or most of) the defects revealed by T.

Coverage based test suite minimization techniques 
analyze the execution profiles of a program in order to 
construct a T’ such that all the profiling elements covered by 
T are also covered by T’ [20][16]. Distribution-based test 
suite minimization [20] techniques select test cases based on 
how their execution profiles are distributed in the 
multidimensional profile space. In this experiment, we use a 
distribution-based technique comprising the following steps: 

a) For each pair of tests (execution profiles), a metric 
that represents their degree of dissimilarity is computed. We 
used the follo (b ri   [4]:wing dissimilarity inary) met c

�������� ! 	 "# $�% &� ' �%!&�$(&)*
where i and j are test cases, r is a profiling element, and k

is the total number of distinct profiling elements induced by 
the test suite. Using this dissimilarity metric, the smaller the 
number of common elements executed by i and j, the larger 
the value of the metric. 

b) Based on the computed metrics, K-means clustering
is applied to partition the population into  k clusters. 

c) One test is randomly selected from each cluster 
similar to what is done in  [4]. This one-per-cluster sampling 
technique economically exercises each program behavior 
represented by a cluster, and it also favors the selection of 
unusual executions, which tend to be placed in isolated 
clusters.

d) The k selected tests represent the tests in T’.

B. Experimental Setup and Results 
This experiment compares the performance of two 

variants of the above cluster-based test suite minimization 
technique. In the first, the original execution profiles are 
used, whereas in the second PCA is first applied.  

Table 2 describes the subject programs, original test 
suites, and minimized test suites using PCA and without 
using it. In order to account for the variability of the samples, 
the algorithm’s steps were applied 1000 times and the results 
were averaged. Therefore, the reported |T’| correspond to 
when T’ reveals 100%, on average, of the defects revealed in 
T. Note that each test suite contained no more that 5% 
failures.

Two points are worth pointing out in regard to our use of 
PCA. First, enough components (eigenvectors) are retained 
so that the cumulative percent of variance accounted for is 
equal to 90% (see Section II.A). Second, Table 2 reports two 
values for |T’|: a) the smallest/earliest |T’| that revealed 100% 
of the defects on average, denoted by “Smallest”; b) the 
smallest |T’| that revealed 100% of the defects on average 
with the additional constraint that it was not followed by a 
larger |T’| that revealed less than 100%, denoted by “Stable”. 

Also, for the PCA based technique, the total initial number of 
eigenvectors and the number of eigenvectors (PCs) retained 
to attain 90% variability, are reported.  

Note that the Space program, which is written in C, was 
profiled using GCov as opposed to our own profiling tools 
which only support Java programs.  

Table 2. Subject Programs and Results 

Program #
Faults |T| 

|T’|: NonPCA |T’|: PCA 

Smallest Stable tot. 
#Eig #Eig Smallest Stable

Space 5 2000 300 400 3164 25 300 300 

JTidy 4 2000 200 200  5110 20 250 250 

print_tokens2 7 3691 550 2550 278 8 500 3300

tot_info 6 952 150 900 271 8 850 950 

schedule 3 1406 750 750 238 14 450 550 

Based on Table 2 we make the following observations: 
1) For JTidy and print_tokens2, PCA had a clear 

negative impact 
2) For tot_info, PCA had a minor negative impact 
3) And for Schedule and Space, it had a clear positive 

impact 
That is, the impact of PCA on cluster-based test suite 
minimization was inconclusive. 

V. CONCLUSIONS AND FUTURE WORK

The aim of this work was to use PCA (Principal 
Component Analysis) as a dimensionality reduction 
technique and investigate its impact on two cluster-based 
analysis techniques, one aiming at identifying coincidentally 
correct tests, and the other at test suite minimization. Our 
experimental results showed that the impact was positive on 
the first technique, but inconclusive on the second. 

In the future, we will experiment with different criteria to 
choose our eigenvectors, and we will investigate variations 
of PCA (e.g., Kernel PCA and Probabilistic PCA) and other 
dimensionality reduction techniques. 
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