
American University of Beirut

Project Report:

Formalization of Trie

Structure Functions

Ameen Jaber

June 10, 2012

1 Introduction

A Trie structure, abbreviated for �Retrieval�, is kind of a digital search tree and an
e�cient indexing method. Starting from head to tail, each node is a state and the
input character determines the next state to go to. There are di�erent implementations
proposed and used for the Trie structure, starting with the two-dimensional array which
is least e�cient in terms of memory use.

In the course project, I formalized the implementation of the double-array Trie struc-
ture proposed in (Aoe, 1989) . The implementation of this structure is present at the
link �An Implementation of Double-Array Trie� I referred to this implementation in my
work, and wrote English speci�cations for a number of the functions present in the code
then represented them with a set of Boolean formulas. After that and based on the
method introduced in (Attie, Zaraket, Fawaz, & Noureddine), I expressed the previous
speci�cations accurately and formally.

2 Accomplished Work

In this section, i present each of the chosen functions to formalize through writing
formal speci�cations to it. For each one, i will explain the purpose of the function, then
present the required vocabulary followed by the pre and post conditions.

1

file:www.linux.thai.net/~thep/datrie/datrie.html

2.1 da_get_base

TrieIndex

da_get_base (const DArray *d, TrieIndex s)

{

return (s < d->num_cells) ? d->cells[s].base : TRIE_INDEX_ERROR;

}

Explanation For clari�cation, base and check represent the double array in the trie
structure. Those slots are used to make the transitions from one state to another getting
the values from the base while the check is used for transition validation. The following
function returns the base cell value for a given input state if the index was within the
cell number bound, else returns an index error.

Vocabulary The vocabulary used for the precondition and postcondition speci�cations
are present below:
VOCi= { d 6= 0, s ≥ 0 }
VOCo= { s < d.num_cells, rv=d→cells[s].base, rv=TRIE_INDEX_ERROR }

Pre/Post Conditions The precondition speci�cation of the function is as follows:
P = d 6= 0 ∧ s ≥ 0
And the postcondition speci�cation of it is as follows:
Q=(s< d.num_cells ∧ rv=d→cells[s].base) ∨ (!(s< d.num_cells) ∧ rv= TRIE_INDEX_ERROR)

2.2 da_get_check

TrieIndex

da_get_check (const DArray *d, TrieIndex s)

{

return (s < d->num_cells) ? d->cells[s].check : TRIE_INDEX_ERROR;

}

Explanation The following function returns the check cell value for a given input state
if the index was within the cell number bound, else returns an index error. The speci�-
cations of this function use almost the same vocabulary of the previous one because the
same functionality is being implemented for a di�erent �eld of the double array.

Vocabulary The vocabulary used for the precondition and postcondition speci�cations
are present below:
VOCi= { d 6= 0, s ≥ 0 }
VOCo= { s < d.num_cells, rv=d→cells[s].check, rv=TRIE_INDEX_ERROR }

2

Pre/Post Conditions The precondition speci�cation of the function is as follows:
P = d 6= 0 ∧ s ≥ 0
And the postcondition speci�cation of it is as follows:
Q=(s< d.num_cells ∧ rv=d→cells[s].check) ∨ (!(s< d.num_cells) ∧ rv= TRIE_INDEX_ERROR)

2.3 da_set_base

TrieIndex

void

da_set_base (DArray *d, TrieIndex s, TrieIndex val)

{

if (s < d->num_cells) {

d->cells[s].base = val;

}

}

Explanation The following function sets the base slot at index s to the value val if the
index is within the base bound, else nothing happens.

Vocabulary The vocabulary used for the precondition and postcondition speci�cations
are present below:
VOCi= { d 6= 0, s ≥ 0 }
VOCo= { s < d.num_cells, d→cells[s].base=val}

Pre/Post Conditions The precondition speci�cation of the function is as follows:
P = d 6= 0 ∧ s ≥ 0
And the postcondition speci�cation of it is as follows:
Q=(s< d.num_cells ∧ d→cells[s].base=val) ∨ !(s< d.num_cells)

2.4 da_set_check

void

da_set_check (DArray *d, TrieIndex s, TrieIndex val)

{

if (s < d->num_cells) {

d->cells[s].check = val;

}

}

Explanation The following function sets the check slot at index s to the value val if the
index is within the base bound, else nothing happens. Again, this function implements
the exact same function expalined in the previous part for the check array, hence the
speci�cations are almost the same.

3

Vocabulary The vocabulary used for the precondition and postcondition speci�cations
are present below:
VOCi= { d 6= 0, s ≥ 0 }
VOCo= { s < d.num_cells, d→cells[s].check=val}

Pre/Post Conditions The precondition speci�cation of the function is as follows:
P = d 6= 0 ∧ s ≥ 0
And the postcondition speci�cation of it is as follows:
Q=(s< d.num_cells ∧ d→cells[s].check=val) ∨ !(s< d.num_cells)

2.5 da_walk

Bool

da_walk (const DArray *d, TrieIndex *s, TrieChar c)

{

TrieIndex next;

next = da_get_base (d, *s) + c;

if (da_get_check (d, next) == *s) {

*s = next;

return _TRUE;

}

return _FALSE;

}

Explanation The following function attempts to walk the double array d from state s
using the input character c. If such a transition is present, a true value is returned and s
is set to transition state, else a false value is returned. The speci�cations of the following
function are dependent on on speci�cations from previous functions formalized, thus we
can introduce their speci�cations as part of the following function's speci�cations.

Vocabulary The vocabulary used for the precondition and postcondition speci�cations
are present below:
VOCi= { d 6= 0, s ≥ 0, c ≥ 0 }
In the post condition speci�cations, we need to check for the following:

t := base[s] + c;

if check[t] = s then

next state := t

else

fail

endif

4

Thus, we need to retieve base[s] and check[base[s]+c] VOCo= { s<d.num_cells,
rv=d→cells[s].base, rv=TRIE_INDEX_ERROR, s=d→cells[s'].check, rv=(rv'+c)}

Pre/Post Conditions The precondition speci�cation of the function is as follows:
P = d 6= 0 ∧ s ≥ 0 ∧ c ≥ 0

And the postcondition speci�cation of this function can be derived from the previous
base and check get functions, thus it can be formulated as follows:
Q= [(s< d.num_cells ∧ rv'=d→cells[s].base) ∨ (!(s<d.num_cells) ∧ rv'=TRIE_INDEX_ERROR)
] ∧ [((rv'+c)< d.num_cells ∧ d→cells[rv'+c].check=s ∧ rv=rv'+c) ∨ (!((rv'+c)<d.num_cells)
∧ rv=TRIE_INDEX_ERROR)]

The �rst part of the postcondition represents the requirements of the solution from
the base read part, whereas the next part represents the requirement of the check array.
The �nal result of the next state is returned for valid result.

3 Conclusion

In the following project, I formalized a couple of the functions implemented in the Trie
structure based on the speci�cation construction method discussed in the paper.

5

	Introduction
	Accomplished Work
	da_get_base
	da_get_check
	da_set_base
	da_set_check
	da_walk

	Conclusion

